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Quadratic Unconstrained Binary Optimization (QUBO)

▶ goal: branch-and-bound solver for

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP based approaches exist only for sparse C

▶ we want to tackle QUBO problems with dense C

Example

Max-Cut Problem: C = 1
4L(G ), where L(G ) Laplacian matrix
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The (Weighted) Max-Cut Problem
Given: undirected graph G = (V ,E ) with edge weights w ∈ RE
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Max-Cut Problem
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)
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(QUBO) is quite general...

▶ minimization ↔ maximization
▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables!
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Example: Exact Penalty Function

▶ undirected, simple graph G = (V ,E ) with |V | = n

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n
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Semidefinite Relaxation of (QUBO)

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X ) = e

▶ X ⪰ 0
▶ rank(X ) = 1

max x⊤Cx
s. t. x ∈ {−1, 1}n

max ⟨C ,X ⟩
s. t. diag(X ) = e

X ⪰ 0

All solvers in the literature use additional ‘clique’ inequalities:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)
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(QUBO) Solvers using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)
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Low-rank Factorization

Factorization of X ⪰ 0

X = V⊤V ⪰ 0

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X ) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]
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Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi )
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9



Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi )
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9



Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi )
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9



Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C ) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.
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Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2

v3

v4

⟨C ,V⊤V ⟩ = −2.469151715641014
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Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?
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Upper Bounds via Weak Duality

Duality

max ⟨C ,X ⟩
s. t. diag(X ) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C = Z

Z ⪰ 0, y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

If V and X = V⊤V are optimal for (SDP-vec) and (SDP), then the
vector y ∈ Rn with entries yi = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C ) e
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Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13



Other Possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C ) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X ) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ more expensive
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Let ỹ ∈ Rn and x̄ such that λmax(X ) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
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Primal Heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1| . . . |vn) ∈ Rk×n (such that V⊤V = X )
Output: x ∈ {−1, 1}n

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ detect reasonable candidates for local search

▶ use a ‘good’/biased hyperplane
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Branch-and-Bound Algorithm

Branching:
▶ branching on products Xij ∈ {−1, 1}
▶ branch on (i , j) where sum of dual variables is large
▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds via weak duality and postprocessing

Features:
▶ early branching
▶ variable fixing
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Branching Example

C =


2 −1 3 −2
−1 −1 1 2
3 1 1 −1
−2 2 −1 1


Branching on (2, 3) with X23 = x2 · x3 = 1:

2 −1 + 3 3 −2
−1 + 3 −1 + 1 + 2 · 1 1 2− 1

3 1 1 −1
−2 2− 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 2 −2
2 2 1
−2 1 1


Branching on (2, 3) with X23 = x2 · x3 = −1:

2 −1− 3 3 −2
−1− 3 −1 + 1− 2 · 1 1 2 + 1

3 1 1 −1
−2 2 + 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 −4 −2
−4 −2 3
−2 3 1



Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17



Branching Decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |
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Feature: Early Branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.
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Feature: Variable Fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.
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Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20



Proof.

Diag(ỹ)− C̃ = Diag

y/j +


∥δ∥1
|δ1|
...

|δn−2|


−

(
C/j −

(
0 δ⊤

δ 0

))

= Diag
(
y/j

)
+Diag



∥δ∥1
|δ1|
...

|δn−2|


− C/j +

(
0 δ⊤

δ 0

)

= Diag
(
y/j

)
− C/j︸ ︷︷ ︸

⪰0

+Diag



∥δ∥1
|δ1|
...

|δn−2|


+

(
0 δ⊤

δ 0

)
︸ ︷︷ ︸

⪰0

⪰ 0
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Variable Fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij

▶ best scenario: ‘free’ dual bound worse than best known primal
bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!
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Preliminary Results

▶ C implementation using Intel MKL
▶ tested on instances from the BiqMac Library with n ≤ 100

Results
▶ 100–1000 times more subproblems than other approaches
▶ 2–10 times faster than the best approach in the literature

Current goal: including triangle inequalities

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k
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Lagrangian Relaxation

(SDP) with triangle inequalities ⟨Ai ,X ⟩ ≤ bi , i = 1, . . . ,m:

max ⟨C ,X ⟩
s. t. diag(X ) = e

A(X ) ≤ b
X ⪰ 0.

After dualizing the constraints A(X ) ≤ b, we have to solve

min
y≥0

b⊤y + max
diag(X )=e

X⪰0

{
⟨C −A⊤(y),X ⟩

} . (∗)

▶ Mixing Method can be used for the inner problem
▶ problem (∗) is nonsmooth
▶ b −A(X ∗) is subgradient Thank you!
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