
An Exact Solver for QUBO Problems
using the Mixing Method
Joint work with Valentin Durante

January 26, 2023

1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 1

Quadratic Unconstrained Binary Optimization (QUBO)

▶ goal: branch-and-bound solver for

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP based approaches exist only for sparse C

▶ we want to tackle QUBO problems with dense C

Example

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

Quadratic Unconstrained Binary Optimization (QUBO)

▶ goal: branch-and-bound solver for

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP based approaches exist only for sparse C

▶ we want to tackle QUBO problems with dense C

Example

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

Quadratic Unconstrained Binary Optimization (QUBO)

▶ goal: branch-and-bound solver for

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP based approaches exist only for sparse C

▶ we want to tackle QUBO problems with dense C

Example

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (Weighted) Max-Cut Problem
Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

The (Weighted) Max-Cut Problem
Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut Problem
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

The (Weighted) Max-Cut Problem
Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut Problem
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

(QUBO) is quite general...

▶ minimization ↔ maximization
▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

(QUBO) is quite general...

▶ minimization ↔ maximization
▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

(QUBO) is quite general...

▶ minimization ↔ maximization
▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

Example: Exact Penalty Function

▶ undirected, simple graph G = (V ,E) with |V | = n

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Example: Exact Penalty Function

▶ undirected, simple graph G = (V ,E) with |V | = n

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Semidefinite Relaxation of (QUBO)

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

max x⊤Cx
s. t. x ∈ {−1, 1}n

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0

All solvers in the literature use additional ‘clique’ inequalities:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Semidefinite Relaxation of (QUBO)

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Equivalent formulations

max x⊤Cx
s. t. x ∈ {−1, 1}n

⇔
max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

All solvers in the literature use additional ‘clique’ inequalities:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Semidefinite Relaxation of (QUBO)

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Semidefinite relaxation (SDP)

max x⊤Cx
s. t. x ∈ {−1, 1}n

≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

All solvers in the literature use additional ‘clique’ inequalities:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Semidefinite Relaxation of (QUBO)

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Semidefinite relaxation (SDP)

max x⊤Cx
s. t. x ∈ {−1, 1}n

≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

All solvers in the literature use additional ‘clique’ inequalities:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

(QUBO) Solvers using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

(QUBO) Solvers using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Low-rank Factorization

Factorization of X ⪰ 0

X = V⊤V ⪰ 0

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Low-rank Factorization

Factorization of X ⪰ 0

X = V⊤V ⪰ 0

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Low-rank Factorization

Factorization of X ⪰ 0

X = V⊤V ⪰ 0

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Low-rank Factorization

Factorization of X ⪰ 0

X = V⊤V ⪰ 0

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2

v3

v4

⟨C ,V⊤V ⟩ = −2.469151715641014

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



V · c1
v1

v2

v3

v4

⟨C ,V⊤V ⟩ = −2.469151715641014

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



V ·c1
∥V ·c1∥

v1

v2

v3

v4

⟨C ,V⊤V ⟩ = −2.469151715641014

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2

v3

v4

⟨C ,V⊤V ⟩ = 0.0701836938398076

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.1042821481042009

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2
v3

v4

⟨C ,V⊤V ⟩ = 2.1248497956082537

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2
v3

v4

⟨C ,V⊤V ⟩ = 2.2584781813631301

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2
v3

v4

⟨C ,V⊤V ⟩ = 2.2669613535505473

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2
v3

v4

⟨C ,V⊤V ⟩ = 2.2669669930002718

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2820426702215686

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2824146853764495

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2825485984904232

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2827921992397187

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2827965824488148

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2828175664597827

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2828214514872149

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2828225671023645

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2828245614424776

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Example with n = 4 and k = 2

C =
1
4


1 1 1 −3
1 −1 1 −1
1 1 −4 2
−3 −1 2 2



v1

v2 v3

v4

⟨C ,V⊤V ⟩ = 2.2828250454404815

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Properties of the Mixing Method

Observations
▶ parameter-free and easy to implement
▶ objective value is strictly increasing
▶ produces primal feasible iterates
▶ warm start possible

But when do we stop?

Stopping criterion: relative step tolerance

▶ stop if ∥Vold−Vnew∥F
1+∥Vold∥F

< ε

▶ we use ε = 0.013

How do we get an upper bound?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Upper Bounds via Weak Duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C = Z

Z ⪰ 0, y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

If V and X = V⊤V are optimal for (SDP-vec) and (SDP), then the
vector y ∈ Rn with entries yi = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper Bounds via Weak Duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C = Z

Z ⪰ 0, y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

If V and X = V⊤V are optimal for (SDP-vec) and (SDP), then the
vector y ∈ Rn with entries yi = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper Bounds via Weak Duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C = Z

Z ⪰ 0, y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

If V and X = V⊤V are optimal for (SDP-vec) and (SDP), then the
vector y ∈ Rn with entries yi = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2

▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper Bounds via Weak Duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C = Z

Z ⪰ 0, y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

If V and X = V⊤V are optimal for (SDP-vec) and (SDP), then the
vector y ∈ Rn with entries yi = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Other Possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ more expensive

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Other Possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ more expensive

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Other Possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ more expensive

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Primal Heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1| . . . |vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ detect reasonable candidates for local search

▶ use a ‘good’/biased hyperplane

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Primal Heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1| . . . |vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ detect reasonable candidates for local search

▶ use a ‘good’/biased hyperplane

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Branch-and-Bound Algorithm

Branching:
▶ branching on products Xij ∈ {−1, 1}
▶ branch on (i , j) where sum of dual variables is large
▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds via weak duality and postprocessing

Features:
▶ early branching
▶ variable fixing

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Branch-and-Bound Algorithm

Branching:
▶ branching on products Xij ∈ {−1, 1}
▶ branch on (i , j) where sum of dual variables is large
▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds via weak duality and postprocessing

Features:
▶ early branching
▶ variable fixing

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Branch-and-Bound Algorithm

Branching:
▶ branching on products Xij ∈ {−1, 1}
▶ branch on (i , j) where sum of dual variables is large
▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds via weak duality and postprocessing

Features:
▶ early branching
▶ variable fixing

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Branching Example

C =


2 −1 3 −2
−1 −1 1 2
3 1 1 −1
−2 2 −1 1


Branching on (2, 3) with X23 = x2 · x3 = 1:

2 −1 + 3 3 −2
−1 + 3 −1 + 1 + 2 · 1 1 2− 1

3 1 1 −1
−2 2− 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 2 −2
2 2 1
−2 1 1


Branching on (2, 3) with X23 = x2 · x3 = −1:

2 −1− 3 3 −2
−1− 3 −1 + 1− 2 · 1 1 2 + 1

3 1 1 −1
−2 2 + 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 −4 −2
−4 −2 3
−2 3 1



Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17

Branching Decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branching Decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branching Decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.

2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branching Decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Feature: Early Branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 19

Feature: Early Branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 19

Feature: Early Branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 19

Feature: Variable Fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Feature: Variable Fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Feature: Variable Fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Proof.

Diag(ỹ)− C̃ = Diag

y/j +


∥δ∥1
|δ1|
...

|δn−2|


−

(
C/j −

(
0 δ⊤

δ 0

))

= Diag
(
y/j

)
+Diag



∥δ∥1
|δ1|
...

|δn−2|


− C/j +

(
0 δ⊤

δ 0

)

= Diag
(
y/j

)
− C/j︸ ︷︷ ︸

⪰0

+Diag



∥δ∥1
|δ1|
...

|δn−2|


+

(
0 δ⊤

δ 0

)
︸ ︷︷ ︸

⪰0

⪰ 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Variable Fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij

▶ best scenario: ‘free’ dual bound worse than best known primal
bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Variable Fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Variable Fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Variable Fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Preliminary Results

▶ C implementation using Intel MKL
▶ tested on instances from the BiqMac Library with n ≤ 100

Results
▶ 100–1000 times more subproblems than other approaches
▶ 2–10 times faster than the best approach in the literature

Current goal: including triangle inequalities

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 23

Preliminary Results

▶ C implementation using Intel MKL
▶ tested on instances from the BiqMac Library with n ≤ 100

Results
▶ 100–1000 times more subproblems than other approaches
▶ 2–10 times faster than the best approach in the literature

Current goal: including triangle inequalities

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 23

Lagrangian Relaxation

(SDP) with triangle inequalities ⟨Ai ,X ⟩ ≤ bi , i = 1, . . . ,m:

max ⟨C ,X ⟩
s. t. diag(X) = e

A(X) ≤ b
X ⪰ 0.

After dualizing the constraints A(X) ≤ b, we have to solve

min
y≥0

b⊤y + max
diag(X)=e

X⪰0

{
⟨C −A⊤(y),X ⟩

} . (∗)

▶ Mixing Method can be used for the inner problem
▶ problem (∗) is nonsmooth
▶ b −A(X ∗) is subgradient Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Lagrangian Relaxation

(SDP) with triangle inequalities ⟨Ai ,X ⟩ ≤ bi , i = 1, . . . ,m:

max ⟨C ,X ⟩
s. t. diag(X) = e

A(X) ≤ b
X ⪰ 0.

After dualizing the constraints A(X) ≤ b, we have to solve

min
y≥0

b⊤y + max
diag(X)=e

X⪰0

{
⟨C −A⊤(y),X ⟩

} . (∗)

▶ Mixing Method can be used for the inner problem
▶ problem (∗) is nonsmooth
▶ b −A(X ∗) is subgradient Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Lagrangian Relaxation

(SDP) with triangle inequalities ⟨Ai ,X ⟩ ≤ bi , i = 1, . . . ,m:

max ⟨C ,X ⟩
s. t. diag(X) = e

A(X) ≤ b
X ⪰ 0.

After dualizing the constraints A(X) ≤ b, we have to solve

min
y≥0

b⊤y + max
diag(X)=e

X⪰0

{
⟨C −A⊤(y),X ⟩

} . (∗)

▶ Mixing Method can be used for the inner problem
▶ problem (∗) is nonsmooth
▶ b −A(X ∗) is subgradient

Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Lagrangian Relaxation

(SDP) with triangle inequalities ⟨Ai ,X ⟩ ≤ bi , i = 1, . . . ,m:

max ⟨C ,X ⟩
s. t. diag(X) = e

A(X) ≤ b
X ⪰ 0.

After dualizing the constraints A(X) ≤ b, we have to solve

min
y≥0

b⊤y + max
diag(X)=e

X⪰0

{
⟨C −A⊤(y),X ⟩

} . (∗)

▶ Mixing Method can be used for the inner problem
▶ problem (∗) is nonsmooth
▶ b −A(X ∗) is subgradient Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

