

Facility Layout Problems:
Solution Approaches and Practical Difficulties

rebruary 17, 2021

Outline

- 1 The single row facility layout problem (SRFLP)
- 2 LP, SDP and Lagrangian relaxation
- 3 LP-based approaches
- 4 Semidefinite relaxations
- 5 An efficient algorithmic approach

Facility Layout Planning

find an optimal placement of machines inside a factory according to a given objective function

Facility Layout Planning

find an optimal placement of machines inside a factory according to a given objective function

- ► applications:
 - VLSI circuit design
 - manufacturing systems
 - **.**..
- very hard problem in general

Single Row Facility Layout Problem (SRFLP)

Given:

- ▶ n one-dimensional machines $[n] := \{1, \ldots, n\}$
- ▶ lengths $\ell_i \ge 0$, $i \in [n]$
- ▶ pairwise transport weights $c_{ij} \ge 0$, $i, j \in [n]$, i < j

Goal: find a permutation $\pi \in \Pi_n$ of the machines minimizing the total weighted sum of center-to-center distances d_{ij}^{π} between all pairs of machines:

$$\begin{array}{cccc}
\min_{\pi \in \Pi_n} & \sum_{\substack{i,j \in [n] \\ i < j}} c_{ij} d_{ij}^{\pi} \\
& & & \\
& & & \\
\hline
 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Literature review

- ▶ first considered by Simmons (1969)
- many applications were identified
- many heuristic approaches in recent years
- exact solution methods include: B&B, MILP, DP, ILP, SDP

Best exact solution methods:

- ▶ Amaral (2009): Integer Linear Programming $(n \le 35)$
- ▶ Hungerländer & Rendl (2013): semidefinite relaxations ($n \le 42$)

Related problems:

- equidistant SRFLP is a special case of the QAP
- ► SRFLP generalizes the (weighted) Linear Arrangement Problem
- other facility layout or ordering problems

How can we solve a combinatorial optimization problem?

- by enumeration of all possible solutions
- by a suitable combinatorial algorithm
- by computing dual bounds (using mathematical programming)

Solving an instance of the SRFLP to optimality requires two things:

- ▶ a feasible solution with some objective value k (upper bound)
- ▶ a prove that the optimal value is at least k (lower bound)
- \hookrightarrow linear and semidefinite relaxations

(Mixed-Integer) Linear Programming

Let $c, x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

$$\begin{aligned} & \text{min} \quad c^{\top} x \\ & \text{s.t.} \quad Ax = b \\ & \quad x \geq 0 \\ & \quad x_i \in \mathbb{Z}, \quad i \in \mathcal{I} \end{aligned}$$

Linear relaxation.

min
$$c^{\top}x$$

s.t. $Ax = b$ (LP)
 $x > 0$

- ightharpoonup opt(LP) \leq opt(MILP)
- ► (LP) can be solved in polynomial time
- we can also add inequality constraints or free variables

(Mixed-Integer) Linear Programming

Let $c, x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \\ & x_i \in \mathbb{Z}, \quad i \in \mathcal{I} \end{array} \tag{MILP}$$

Linear relaxation:

$$\begin{array}{ll} \min & c^{\top} x \\ \text{s.t.} & Ax = b \\ & x > 0 \end{array} \tag{LP}$$

- ightharpoonup opt(LP) \leq opt(MILP)
- ► (LP) can be solved in polynomial time
- we can also add inequality constraints or free variables

Semidefinite Programming (SDP)

- $\triangleright \ \mathcal{S}_n := \left\{ A \in \mathbb{R}^{n \times n} \colon A = A^\top \right\}$
- $lackbox{} \langle A,B \rangle := \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij} \text{ for any } A,B \in \mathcal{S}_n$

Let $C, A_1, \ldots, A_m \in S_n$ and $b \in \mathbb{R}^m$. A semidefinite program in standard form can be written as

min
$$\langle C, X \rangle$$

s.t. $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m$ (SDP)
 $X \succeq 0.$

• we also write $\mathcal{A}(X) = b$, where $\mathcal{A} \colon \mathcal{S}_n \to \mathbb{R}^m$ is a linear operator of the form

$$\mathcal{A}(X) = \begin{pmatrix} \langle A_1, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{pmatrix}$$

- ▶ adjoint operator: $\mathcal{A}^{\top}(y) := \mathcal{A}^*(y) = \sum_{i=1}^m y_i A_i$ for all $y \in \mathbb{R}^m$
- well-posed SDPs can be solved in polynomial time

Semidefinite Programming (SDP)

- $\triangleright \ \mathcal{S}_n := \left\{ A \in \mathbb{R}^{n \times n} \colon A = A^\top \right\}$
- $lackbox{} \langle A,B \rangle := \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij} \text{ for any } A,B \in \mathcal{S}_n$

Let $C, A_1, \ldots, A_m \in \mathcal{S}_n$ and $b \in \mathbb{R}^m$. A semidefinite program in standard form can be written as

min
$$\langle C, X \rangle$$

s.t. $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m$ (SDP)
 $X \succeq 0.$

▶ we also write A(X) = b, where $A: S_n \to \mathbb{R}^m$ is a linear operator of the form

$$\mathcal{A}(X) = \begin{pmatrix} \langle A_1, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{pmatrix}$$

- ▶ adjoint operator: $A^{\top}(y) := A^*(y) = \sum_{i=1}^m y_i A_i$ for all $y \in \mathbb{R}^m$
- well-posed SDPs can be solved in polynomial time

Semidefinite Programming (SDP)

- $ightharpoonup \langle A,B \rangle := \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$ for any $A,B \in \mathcal{S}_n$

Let $C, A_1, \ldots, A_m \in \mathcal{S}_n$ and $b \in \mathbb{R}^m$. A semidefinite program in standard form can be written as

min
$$\langle C, X \rangle$$

s.t. $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m$ (SDP)
 $X \succeq 0.$

• we also write $\mathcal{A}(X) = b$, where $\mathcal{A} \colon \mathcal{S}_n \to \mathbb{R}^m$ is a linear operator of the form

$$\mathcal{A}(X) = \begin{pmatrix} \langle A_1, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{pmatrix}$$

- ▶ adjoint operator: $\mathcal{A}^{\top}(y) := \mathcal{A}^*(y) = \sum_{i=1}^m y_i A_i$ for all $y \in \mathbb{R}^m$
- well-posed SDPs can be solved in polynomial time

Lagrangian relaxation

$$\begin{array}{ll} & \text{min} & \langle C, X \rangle \\ \text{(*)} & \text{s.t.} & \mathcal{A}(X) = b & (\Leftrightarrow \mathcal{A}(X) - b = 0) \\ & X \in \mathcal{X} \subseteq \mathcal{S}_n \end{array}$$

- lacktriangle assumption: (*) without $\mathcal{A}(X)=b\in\mathbb{R}^m$ much easier to solve
- ▶ primal variable X and dual variable $\mu \in \mathbb{R}^m$
- Lagrangian: $\mathcal{L}(X; \mu) := \langle C, X \rangle + \mu^{\top}(\mathcal{A}(X) b)$
- dual function: $f(\mu) := \inf_{X \in \mathcal{X}} \mathcal{L}(X; \mu)$
- weak duality: $f(\mu) \leq \langle C, X \rangle$ for all X feasible in (*) and all $\mu \in \mathbb{R}^m$, since $\mu^{\top}(A(X) b) = 0$ for all X feasible in (*)
- dual problem:

$$sup \quad f(\mu) \\ s.t. \quad \mu \in \mathbb{R}^n$$

Lagrangian relaxation

$$\begin{array}{ll} & \text{min} & \langle C, X \rangle \\ \text{(*)} & \text{s.t.} & \mathcal{A}(X) = b & (\Leftrightarrow \mathcal{A}(X) - b = 0) \\ & X \in \mathcal{X} \subseteq \mathcal{S}_n \end{array}$$

- ▶ assumption: (*) without $\mathcal{A}(X) = b \in \mathbb{R}^m$ much easier to solve
- ▶ primal variable X and dual variable $\mu \in \mathbb{R}^m$
- Lagrangian: $\mathcal{L}(X; \mu) := \langle C, X \rangle + \mu^{\top}(\mathcal{A}(X) b)$
- dual function: $f(\mu) := \inf_{X \in \mathcal{X}} \mathcal{L}(X; \mu)$
- weak duality: $f(\mu) \leq \langle C, X \rangle$ for all X feasible in (*) and all $\mu \in \mathbb{R}^m$, since $\mu^{\top}(A(X) b) = 0$ for all X feasible in (*)
- dual problem:

$$\sup f(\mu)$$
s.t. $\mu \in \mathbb{R}^n$

Lagrangian relaxation

$$\begin{array}{ll} & \text{min} & \langle C, X \rangle \\ \text{(*)} & \text{s.t.} & \mathcal{A}(X) = b & (\Leftrightarrow \mathcal{A}(X) - b = 0) \\ & X \in \mathcal{X} \subseteq \mathcal{S}_n \end{array}$$

- lacktriangle assumption: (*) without $\mathcal{A}(X)=b\in\mathbb{R}^m$ much easier to solve
- ▶ primal variable X and dual variable $\mu \in \mathbb{R}^m$
- ▶ Lagrangian: $\mathcal{L}(X; \mu) := \langle C, X \rangle + \mu^{\top}(\mathcal{A}(X) b)$
- dual function: $f(\mu) := \inf_{X \in \mathcal{X}} \mathcal{L}(X; \mu)$
- weak duality: $f(\mu) \leq \langle C, X \rangle$ for all X feasible in (*) and all $\mu \in \mathbb{R}^m$, since $\mu^{\top}(A(X) b) = 0$ for all X feasible in (*)
- dual problem:

$$\sup f(\mu)$$
s.t. $\mu \in \mathbb{R}^m$

MILP formulation by Love & Wong (1976) I

Intuitive modelling approach with the following variables:

▶ ordering variables $u_{ij} \in \{0,1\}$, $i,j \in [n]$, $i \neq j$, with the meaning

$$u_{ij} = egin{cases} 1, & ext{if machine } i ext{ lies to the left of machine } j \ 0, & ext{otherwise.} \end{cases}$$

ightharpoonup position variables p_i ($\widehat{=}$ abscissa of the centers), $i \in [n]$, with

$$\tfrac{\ell_i}{2} \leq p_i \leq M - \tfrac{\ell_i}{2},$$

where $M\coloneqq \sum_{i\in[n]}\ell_i$

▶ distance variables $d_{ij} \ge 0$, $i, j \in [n]$, i < j

MILP formulation by Love & Wong (1976) II

$$\begin{aligned} & \min & & \sum_{\substack{i,j \in [n] \\ i < j}} c_{ij} d_{ij} \\ & \text{s.t.} & & u_{ij} + u_{ji} = 1, & & i,j \in [n], \ i < j, \\ & & d_{ij} \geq p_i - p_j, & & i,j \in [n], \ i < j, \\ & & d_{ij} \geq p_j - p_i, & & i,j \in [n], \ i < j, \\ & & p_i + \frac{\ell_i + \ell_j}{2} \leq p_j + M(1 - u_{ij}), & i,j \in [n], \ i \neq j, \\ & & \frac{\ell_i}{2} \leq p_i \leq M - \frac{\ell_i}{2}, & & i \in [n], \\ & & d_{ij} \geq 0, & & i,j \in [n], \ i < j, \\ & & u_{i,j} \in \{0,1\}, & & i,j \in [n], \ i \neq j. \end{aligned}$$

Very poor linear relaxation: optimal solution is given by

$$d_{ij} := 0, \quad i, j \in [n], \ i < j,$$

$$p_i := \max \{ \ell_j : j \in [n] \}, \quad i \in [n],$$

$$u_{ij} := \frac{1}{2}, \quad i, j \in [n], \ i \neq j.$$

MILP formulation by Love & Wong (1976) II

$$\begin{aligned} & \min & & \sum_{\substack{i,j \in [n] \\ i < j}} c_{ij} d_{ij} \\ & \text{s.t.} & & u_{ij} + u_{ji} = 1, & & i,j \in [n], \ i < j, \\ & & d_{ij} \geq p_i - p_j, & & i,j \in [n], \ i < j, \\ & & d_{ij} \geq p_j - p_i, & & i,j \in [n], \ i < j, \\ & & p_i + \frac{\ell_i + \ell_j}{2} \leq p_j + M(1 - u_{ij}), & i,j \in [n], \ i \neq j, \\ & & \frac{\ell_i}{2} \leq p_i \leq M - \frac{\ell_i}{2}, & & i \in [n], \\ & & d_{ij} \geq 0, & & i,j \in [n], \ i < j, \\ & & u_{i,j} \in \{0,1\}, & & i,j \in [n], \ i \neq j. \end{aligned}$$

Very poor linear relaxation: optimal solution is given by

$$d_{ij} := 0, \quad i, j \in [n], \ i < j,$$

$$p_i := \max \{\ell_j : j \in [n]\}, \quad i \in [n],$$

$$u_{ij} := \frac{1}{2}, \quad i, j \in [n], \ i \neq j.$$

Why distance variables should be avoided

- several incremental improvements, e.g., Amaral (2006, 2008)
- ightharpoonup significant by Amaral & Letchford (2013): they solved an instance with n=30 in about one day using the lower bounds within a branch-and-bound approach

However:

- still relatively weak lower bounds
- theoretical evidence that the approach is rather limited
- ▶ feasible set depends on the concrete instance
- only a 'local' modelling, weak coupling

Betweenness variables (Amaral, 2009)

$$b_{ijk} \in \{0,1\}, i,j,k \in [n], |\{i,j,k\}| = 3, i < k$$
, with the meaning

$$b_{ijk} = egin{cases} 1, & j ext{ lies between } i ext{ and } k \ 0, & ext{otherwise}. \end{cases}$$

Motivation:

$$d_{ij} = \frac{\ell_i + \ell_j}{2} + \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj}, \qquad i,j \in [n], \ i < j$$

SRFLP formulation:

$$\min \sum_{\substack{i,j \in [n]\\i < j}} c_{ij} \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj} + \sum_{\substack{i,j \in [n]\\i < j}} c_{ij} \frac{\ell_i + \ell_j}{2}$$

s.t. the betweenness variables represent a permutation

Betweenness model (Amaral, 2009)

$$\min \sum_{\substack{i,j \in [n] \\ i < j}} c_{ij} \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj} + \sum_{\substack{i,j \in [n] \\ i < j}} c_{ij} \frac{\ell_i + \ell_j}{2}$$

$$\text{s.t.} \quad b_{ijk} + b_{ikj} + b_{jik} = 1, \quad i,j,k \in [n], \ i < j < k$$

$$b_{ihj} + b_{ihk} + b_{jhk} \leq 2, \quad i,j,k,h \in [n], \ |\{i,j,k,h\}| = 4, \ i < j < k$$

$$-b_{ihj} + b_{ihk} + b_{jhk} \geq 0, \quad i,j,k,h \in [n], \ |\{i,j,k,h\}| = 4, \ i < j < k$$

$$b_{ihj} - b_{ihk} + b_{jhk} \geq 0, \quad i,j,k,h \in [n], \ |\{i,j,k,h\}| = 4, \ i < j < k$$

$$b_{ihj} + b_{ihk} - b_{jhk} \geq 0, \quad i,j,k,h \in [n], \ |\{i,j,k,h\}| = 4, \ i < j < k$$

$$b_{iik} \in \{0,1\}, \quad i,j,k \in [n], \ |\{i,j,k\}| = 3, \ i < k$$

Up to symmetry, there are three cases:

h can only lie between zero **or** two pairs of (i, j), (i, k), (j, k)!

Properties of the betweenness formulation

Strengths:

- 'global' modelling, strong coupling
- linear relaxation often yields the optimal value
- additional inequalities known

Weaknesses:

- simplex method extremely slow
- linear relaxation can already be insufficient for n = 6

How can we find even better lower bounds?

 \hookrightarrow semidefinite programming (SDP)!

Bivalent quadratic formulation I

Again we use **ordering variables**, but now with values in $\{-1, 1\}$:

$$x_{ij} = egin{cases} +1, & ext{if i lies to the left of j} \ -1, & ext{otherwise} \end{cases}, \quad i,j \in [n], \ i
eq j.$$

Connection to betweenness variables:

$$b_{ijk} = \frac{1 - y_{ji}y_{jk}}{2}, j < i < k, \quad b_{ijk} = \frac{1 + y_{ij}y_{jk}}{2}, j < i < k,$$

$$b_{ijk} = \frac{1 - y_{ij}y_{kj}}{2}, j < i < k.$$

The following *three-cycle-equations* must be satisfied:

$$x_{ij}x_{jk} - x_{ij}x_{ik} - x_{ik}x_{jk} = -1, \quad i, j, k \in [n], i < j < k.$$

Bivalent quadratic formulation II

$$\min K - \sum_{\substack{i,j \in [n] \\ i < j}} \frac{c_{ij}}{2} \left(\sum_{\substack{k \in [n] \\ k < i}} \ell_k x_{ki} x_{kj} - \sum_{\substack{k \in [n] \\ i < k < j}} \ell_k x_{ik} x_{kj} + \sum_{\substack{k \in [n] \\ k > j}} \ell_k x_{ik} x_{jk} \right)$$

s.t.
$$x_{ij}x_{jk} - x_{ij}x_{ik} - x_{ik}x_{jk} = -1,$$
 $i, j, k \in [n], i < j < k,$ $x_{ij} \in \{-1, 1\},$ $i, j \in [n], i < j.$

Consider the matrix $X = xx^{\top}$ with entries $X_{ij,kl} = x_{ij}x_{kl}$. We have:

- $\triangleright X_{ii,ij} = 1$; we write diag $(X) = e = (1, ..., 1)^{\top}$
- ightharpoonup rk(X) = 1
- \blacktriangleright $X \succeq 0$, since $X = X^{\top}$ and $v^{\top}Xv = v^{\top}xx^{\top}v = (v^{\top}x)^2 \geq 0$

Bivalent quadratic formulation II

$$\min K - \sum_{\substack{i,j \in [n] \\ i < j}} \frac{c_{ij}}{2} \left(\sum_{\substack{k \in [n] \\ k < i}} \ell_k x_{ki} x_{kj} - \sum_{\substack{k \in [n] \\ i < k < j}} \ell_k x_{ik} x_{kj} + \sum_{\substack{k \in [n] \\ k > j}} \ell_k x_{ik} x_{jk} \right)$$

s.t.
$$x_{ij}x_{jk} - x_{ij}x_{ik} - x_{ik}x_{jk} = -1,$$
 $i, j, k \in [n]$ $x_{ij} \in \{-1, 1\},$ $i, j \in [n]$

 $i, j, k \in [n], i < j < k,$ $i, i \in [n], i < i$

Consider the matrix $X = xx^{\top}$ with entries $X_{ii.kl} = x_{ii}x_{kl}$. We have:

- \triangleright $X_{ii,ii} = 1$; we write diag $(X) = e = (1, ..., 1)^{\top}$
- $ightharpoonup \operatorname{rk}(X) = 1$
- \blacktriangleright $X \succeq 0$, since $X = X^{\top}$ and $v^{\top}Xv = v^{\top}xx^{\top}v = (v^{\top}x)^2 > 0$

Semidefinite relaxation

Matrix-based formulation:

$$\begin{array}{ll} \min & \langle C,X \rangle + K \\ \text{s.t.} & X_{ij,jk} - X_{ij,ik} - X_{ik,jk} = -1, \\ & \operatorname{diag}(X) = e \\ & \operatorname{rk}(X) = 1 \\ & X \succ 0 \end{array}$$

Semidefinite relaxation:

$$\begin{aligned} & \min \quad \langle C, X \rangle + K \\ & \text{s.t.} \quad X_{ij,jk} - X_{ij,ik} - X_{ik,jk} = -1, \qquad i,j,k \in [n], \ i < j < k, \\ & \operatorname{diag}(X) = e \\ & X \succeq 0 \end{aligned}$$

Semidefinite relaxation

Matrix-based formulation:

$$\begin{array}{ll} \min & \langle C,X \rangle + K \\ \text{s.t.} & X_{ij,jk} - X_{ij,ik} - X_{ik,jk} = -1, \\ & \operatorname{diag}(X) = e \\ & \operatorname{rk}(X) = 1 \\ & X \succ 0 \end{array}$$

Semidefinite relaxation:

$$\begin{aligned} & \min \quad \langle C, X \rangle + K \\ & \text{s.t.} \quad X_{ij,jk} - X_{ij,ik} - X_{ik,jk} = -1, \qquad i,j,k \in [n], \ i < j < k, \\ & \text{diag}(X) = e \\ & X \succeq 0 \end{aligned}$$

Strengthened semidefinite relaxation

Anjos et al. (2006), Hungerländer & Rendl (2013) also added the so-called *triangle inequalities*:

Proposition

The semidefinite relaxation (SDP_{tri}) is at least as strong than the linear relaxation of the betweenness model.

more inequalities: pentagonal inequalities, hexagonal inequalities, heptagonal inequalities, . . .

Strengthened semidefinite relaxation

Anjos et al. (2006), Hungerländer & Rendl (2013) also added the so-called *triangle inequalities*:

Proposition

The semidefinite relaxation (SDP_{tri}) is at least as strong than the linear relaxation of the betweenness model.

more inequalities: pentagonal inequalities, hexagonal inequalities, heptagonal inequalities, . . .

- we cannot include all inequalities at the same time
- ▶ standard interior-point methods require a running time of $\mathcal{O}(n^9)$!
- \hookrightarrow we must use a customized, approximative first-order method that is much faster in practice!

We consider the following optimization problem:

min
$$\langle C, X \rangle$$

s.t. $\mathcal{A}(X) \leq a$
 $\mathcal{B}(X) = e$
 $X \succeq 0$
 $\operatorname{rk}(X) = 1 \Leftrightarrow ||X||_F^2 = n^2$

Let
$$X \in \{Y \in \mathbb{R}^{n \times n} : \operatorname{diag}(Y) = e, Y \succeq 0\}$$
. Then we have

$$\|X\|_F \le n$$
, and $\operatorname{rk}(X) = 1 \iff \|X\|_F = n$.

- we cannot include all inequalities at the same time
- ▶ standard interior-point methods require a running time of $\mathcal{O}(n^9)$!

 \hookrightarrow we must use a customized, approximative first-order method that is much faster in practice!

We consider the following optimization problem:

min
$$\langle C, X \rangle$$

s.t. $\mathcal{A}(X) \leq a$
 $\mathcal{B}(X) = e$
 $X \succeq 0$
 $\mathsf{rk}(X) = 1 \Leftrightarrow \|X\|_F^2 = n^2$

Let
$$X \in \{Y \in \mathbb{R}^{n \times n} : \operatorname{diag}(Y) = e, Y \succeq 0\}$$
. Then we have

$$\|X\|_F \le n, \qquad \text{and} \qquad \operatorname{rk}(X) = 1 \quad \Longleftrightarrow \quad \|X\|_F = n.$$

- we cannot include all inequalities at the same time
- ▶ standard interior-point methods require a running time of $\mathcal{O}(n^9)$!

 \hookrightarrow we must use a customized, approximative first-order method that is much faster in practice!

We consider the following optimization problem:

min
$$\langle C, X \rangle$$

s.t. $\mathcal{A}(X) \leq a$
 $\mathcal{B}(X) = e$
 $X \succeq 0$
 $\mathsf{rk}(X) = 1 \Leftrightarrow \|X\|_F^2 = n^2$

Let
$$X \in \{Y \in \mathbb{R}^{n \times n} : \operatorname{diag}(Y) = e, Y \succeq 0\}$$
. Then we have

$$||X||_F \le n$$
, and $rk(X) = 1 \iff ||X||_F = n$.

- we cannot include all inequalities at the same time
- ▶ standard interior-point methods require a running time of $\mathcal{O}(n^9)$!

 \hookrightarrow we must use a customized, approximative first-order method that is much faster in practice!

We consider the following optimization problem:

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) \leq a \\ & \mathcal{B}(X) = e \\ & X \succeq 0 \\ & \operatorname{rk}(X) = 1 \Leftrightarrow \|X\|_F^2 = n^2 \end{array}$$

Let
$$X \in \{Y \in \mathbb{R}^{n \times n} : \operatorname{diag}(Y) = e, Y \succeq 0\}$$
. Then we have

$$||X||_F \le n$$
, and $rk(X) = 1 \iff ||X||_F = n$.

Applying Lagrangian relaxation

primal variable: $X \in \mathcal{S}_n$

dual variables: $\lambda \geq 0$, μ , $Z \succeq 0$, α

Lagrangian:

$$\mathcal{L}(X; \lambda, \mu, Z, \alpha) := \langle C, X \rangle + \lambda^{\top} (\mathcal{A}(X) - a) + \mu^{\top} (\mathcal{B}(X) - e) + \frac{\alpha}{2} (\|X\|^2 - n^2) - \langle Z, X \rangle$$

Dual function:

$$f(\lambda, \mu, Z, \alpha) := \inf_{X \in S_n} \mathcal{L}(X; \lambda, \mu, Z, \alpha)$$

= $c(\lambda, \mu, \alpha) + \inf_{X \in S_n} \left\{ \frac{\alpha}{2} \|X\|^2 + \langle C(\lambda, \mu) - Z, X \rangle \right\},$

where

$$c(\lambda, \mu, \alpha) := -\mathbf{a}^{\top} \lambda - \mathbf{e}^{\top} \mu - \frac{\alpha}{2} n^{2}$$
$$c(\lambda, \mu) := C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu)$$

Dual problem:

$$\sup_{\lambda \geq 0, \ \mu, \ Z \succeq 0, \ \alpha} f(\lambda, \mu, Z, \alpha)$$

Algorithmic approach I

Theorem (Malick & Roupin (2012))

Given dual variables $\lambda \geq 0$, μ , $Z \succeq 0$ and $\alpha > 0$, the minimum of the Lagrangian $\mathcal{L}(X; \lambda, \mu, Z, \alpha)$ is attained at

$$X = \frac{1}{\alpha} \left(Z - C - \mathcal{A}^{\top}(\lambda) - \mathcal{B}^{\top}(\mu) \right)$$

and the dual function can be written

$$f(\lambda, \mu, Z, \alpha) = -\mathbf{a}^{\top}\lambda - \mathbf{e}^{\top}\mu - \frac{\alpha}{2}\mathbf{n}^{2} - \frac{1}{2\alpha}\left\|C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) - Z\right\|^{2}.$$

Theorem (Malick & Roupin (2012))

Given dual variables (λ, μ, α) with $\alpha > 0$, the dual function can be maximized over Z; the resulting simplified dual function is

$$\begin{split} f(\lambda, \mu, \alpha) &\coloneqq \max_{Z \succeq 0} f(\lambda, \mu, Z, \alpha) \\ &= -\mathbf{a}^{\top} \lambda - \mathbf{e}^{\top} \mu - \frac{\alpha}{2} \mathbf{n}^2 - \frac{1}{2\alpha} \left\| \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-} \right\|^2, \end{split}$$

where $[\,\cdot\,]_-$ denotes the projection onto the cone of negative semidefinite matrices.

A NUMBAR OPTIN

Algorithmic approach II

• $f(\lambda, \mu, \alpha)$ is differentiable at any (λ, μ, α) with $\alpha > 0$ and the partial derivatives are

$$\begin{split} \partial_{\lambda} f(\lambda, \mu, \alpha) &= -\frac{1}{\alpha} \mathcal{A} \left(\left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-} \right) - a \\ \partial_{\mu} f(\lambda, \mu, \alpha) &= -\frac{1}{\alpha} \mathcal{B} \left(\left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-} \right) - e \end{split}$$

Algorithmic idea:

- fix $\overline{\alpha} > 0$ and optimize $f(\lambda, \mu, \overline{\alpha})$ over $\lambda \geq 0$ and μ
- ▶ in the SRFLP setting: by taking $\alpha > 0$ small enough, we can get arbitrarily close to the bound of the semidefinite relaxation

Results:

- outperforms all approaches in the literature (faster, stronger bounds)
- by using additional pentagonal, hexagonal and heptagonal inequalities, SRFLP instances with up to n=81 could be solved for the first time

The Double Row Facility Layout Problem (DRFLP)

- solution is no permutation
- gaps are possible
- distances may be zero
- can distance variables be avoided?
- is there any good semidefinite relaxation?
- ▶ if yes, how can it be solved?

