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Facility Layout Planning

» find an optimal placement of machines inside a factory according to
a given objective function
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Facility Layout Planning

» find an optimal placement of machines inside a factory according to
a given objective function

» applications:

> VLSI circuit design
» manufacturing systems
> ..

» very hard problem in general
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Single Row Facility Layout Problem (SRFLP)

Given: » n one-dimensional machines [n] .= {1,...,n}

> lengths ¢; >0, i € [n]

> pairwise transport weights ¢; > 0, i,j € [n], i <
Goal:  find a permutation m € [, of the machines minimizing

the total weighted sum of center-to-center distances dj be-
tween all pairs of machines:

min g cidl
well, Uty

ij€ln]
1<J
diz
di3 da3 ;
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Literature review

> first considered by Simmons (1969)

» many applications were identified

» many heuristic approaches in recent years

» exact solution methods include: B&B, MILP, DP, ILP, SDP

Best exact solution methods:
» Amaral (2009): Integer Linear Programming (n < 35)
» Hungerldnder & Rendl (2013): semidefinite relaxations (n < 42)

Related problems:
» equidistant SRFLP is a special case of the QAP
» SRFLP generalizes the (weighted) Linear Arrangement Problem
» other facility layout or ordering problems

M
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How can we solve a combinatorial optimization problem?

» by enumeration of all possible solutions
» by a suitable combinatorial algorithm
» by computing dual bounds (using mathematical programming)

Solving an instance of the SRFLP to optimality requires two things:
> a feasible solution with some objective value k (upper bound)

> a prove that the optimal value is at least k (lower bound)

< linear and semidefinite relaxations

.
=g
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(Mixed-Integer) Linear Programming

Let c,x ¢ R", A R™*", bc R™.

min  ¢'x

st. Ax=0b
x>0 (MILP)
xi €4, I€T
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(Mixed-Integer) Linear Programming

Let c,x ¢ R", A R™*", bc R™.

min  ¢'x

st. Ax=0b
50 (MILP)

xi €4, I€T

Linear relaxation: .
min ¢’ x

st. Ax=b (LP)
x>0

» opt(LP) < opt(MILP)

» (LP) can be solved in polynomial time

> we can also add inequality constraints or free variables

M
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Semidefinite Programming (SDP)

> Sp={AeR™" A=AT}
> (AB) =37, > " ajbjforany A, BE€S,
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Semidefinite Programming (SDP)

> Sp={AeR™" A=AT}
> (AB) =37, > " ajbjforany A, BE€S,

Let C,A1,...,An € S, and b € R™. A semidefinite program in standard form

can be written as
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Semidefinite Programming (SDP)

> Sp={AeR™": A=AT}
> (AB) =37, > " ajbjforany A, BE€S,

Let C,A1,...,An € S, and b € R™. A semidefinite program in standard form
can be written as

min  (C, X)
s.t. (A,‘,X> =b;, i=1....m (SDP)
X = 0.

> we also write A(X) = b, where A: S, — R™ is a linear operator of the

form
<A17 X>

A(X) = :
(Am, X)

> adjoint operator: A" (y) = A"(y) = 3.7, yiA; for all y € R™

» well-posed SDPs can be solved in polynomial time R {M .

MINOA
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Lagrangian relaxation

min  (C, X)
(*) st. AX)=b (& AX)—b=0)
XeXCs,

» assumption: (%) without A(X) = b € R™ much easier to solve

M
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Lagrangian relaxation

min  (C, X)
(*) st. AX)=b (& AX)—b=0)
XeXCs,

» assumption: (x) without A(X) = b € R™ much easier to solve

» primal variable X and dual variable p € R™
» Lagrangian: L(X;u) = (C,X) + u" (A(X) — b)
» dual function: f(u) = xlgiv L(X; 1)

M
=g
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Lagrangian relaxation

min  (C, X)
(*) st. AX)=b (& AX)—b=0)
XeXCs,

» assumption: (x) without A(X) = b € R™ much easier to solve

» primal variable X and dual variable p € R™
» Lagrangian: L(X;u) = (C,X) + u" (A(X) — b)
» dual function: f(u) = X|21; L(X; 1)

» weak duality: f(u) < (C,X) for all X feasible in (%) and all x € R™,
since 11" (A(X) — b) = 0 for all X feasible in ()
» dual problem:

sup  f(p)
st. peR™ "

A ° | MINOA
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MILP formulation by Love & Wong (1976) |

Intuitive modelling approach with the following variables:

> ordering variables uj; € {0,1}, i,/ € [n], i # j, with the meaning

1, if machine i lies to the left of machine j
Ui —
Y 0, otherwise.

> position variables p; (= abscissa of the centers), i € [n], with

<pi<M-—

NS

4
where M =3, i

» distance variables djj > 0, i,j € [n], i
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MILP formulation by Love & Wong (1976) I

Jan Schwiddessen

min

s.t.

Z C,Jdu

i,j€ln], i<},
i,j €[n], i </,
i,j€ln], i<j,

L+t .. . .
pi+ “5L < py+ M(L—uy), ijeln], i+ ],

ij€ln]

i<j
ujj + ujj = 1,
dij > pi — pjs
dij = pj — pi,
L<p<Mm

uij € {0, 1},

—%, i€ [n],
i,j €ln], i <J,
ijeln], i#j.

M

Afjo
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MILP formulation by Love & Wong (1976) I
min Z C,Jdu

ij€ln]
1<J
st uj+ui=1, i,j €ln], i </,
dij > pi — pjs i,j€ln], i <J,
dij > pj — pis i,j€ln], i<j,
pi+ 2 < pi+ M(L—uy), ij€ln) i#],
Y<p<M-%, i€ [nl,
dij >0, i,j€ln], i</,
ujj € {0,1}, i,j €[n], i #]J.

Very poor linear relaxation: optimal solution is given by

dj =0, i,j€el[n], i<}j,
pi :=max{{;:j € [n]}, i€ln],

wj=3%, i€ lnl i) Fe

Jan Schwiddessen Institut fiir Mathematik
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Why distance variables should be avoided

> several incremental improvements, e.g., Amaral (2006, 2008)

> significant by Amaral & Letchford (2013): they solved an instance
with n = 30 in about one day using the lower bounds within a
branch-and-bound approach

However:

> still relatively weak lower bounds
> theoretical evidence that the approach is rather limited
> feasible set depends on the concrete instance

» only a ‘local’ modelling, weak coupling
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Betweenness variables (Amaral, 2009)

bjix € {0,1}, i,j, k € [n], [{i,j, k}| =3, i < k, with the meaning

1, j lies between i and k
bijk = .
0, otherwise.

Motivation:
Ui+ ¢ . ..
dj = SR A Z Libig, i,j€ln], i<}
ke[n\{ij}
SRFLP formulation:

min Z Gjj Z Libig + Z CU@;—;EJ

ijeln  keln\{ij} ijeln]
<J 1<j

s.t. the betweenness variables represent a permutation

M
=g
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Betweenness model (Amaral, 2009)

min Z Cij Z ékb,kj + Z E +£

el kel{id} iyl
I<j I<J
s.t. bk + by + bji = 1, ijyok€n], i<j<k

binj + bink + bjnk < 2 ijyk,heln], i, k,h}| =4, i<j<k
—bihj + bihk + bjhk 2 07 i7j7 k7 he [n]7 |{l7./7k7h}| = 47 I<J < k
binj — bink + bjnk > 0, ij,k,heln], [{ij, k,h}| =4, i<j<k
binj + bink — bjnk > 0 ijyk,hen], [{ij, k,h}| =4, i<j<k
by € {0,1}, Pkl 1 K} =3, 7 <k

Up to symmetry, there are three cases:

i J k
i k J
j i k

h can only lie between zero or two pairs of (i), (i, k), (j, k)!
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Properties of the betweenness formulation

Strengths:
> ‘global’ modelling, strong coupling
» linear relaxation often yields the optimal value
» additional inequalities known

Weaknesses:
» simplex method extremely slow
» linear relaxation can already be insufficient for n = 6

How can we find even better lower bounds?
— semidefinite programming (SDP)!

M
=g
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Bivalent quadratic formulation |

Again we use ordering variables, but now with values in {-1,1}:

+1, if i lies to the left of j . L,
i = —1, otherwise o el T A

Connection to betweenness variables:

1 —yjiyj 14 vy
b’.lk:%aj<l<k, bijk:_+§u}{,k,j<i<k7

L—yiyy . .
bl‘jk:%,‘j<l<k.

The following three-cycle-equations must be satisfied:

XijXjk — XijXik — XieXje = —1, i, j, k € [n], i <j < k.

M

=g
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Bivalent quadratic formulation |l

min K — Z % Z O xuixj — Z LicXinXij + Z LieXikXjk

i,jE€[n] ke(n] ke[n] ke[n]
i< K<i i<k<j k>j
St XXk — XijXik — XikXjk = -1, i,j, k€ [n], i <j<k,
xj € {—1,1}, i,j€ln], i <j.
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Bivalent quadratic formulation Il

min K — Z % Z éka,'ij — Z ka,'kaj + Z ka,'kak

i,j€ln] ke(n] ke(n] ke(n]
i< K<i i<k<j k>j
St XXk — XijXik — XikXjk = -1, i,j, k€ [n], i <j<k,
xj € {—1,1}, i,j€ln], i <j.

Consider the matrix X = xx' with entries Xij ki = Xiixwi. We have:
> Xj i =1; we write diag(X) =e=(1,..., 1)’
> rk(X)=1
> X =0,sinceX=X"Tandv Xv=vTxx"v= (vTx)2 >0

M
=g
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Semidefinite relaxation

Matrix-based formulation:

min  (C,X)+ K

s.t. X,'j’jk — X,'J'7,'k —X,'ka =-1, i,j,k S [n], I<j < k,
diag(X) =e
k(X)) = 1
X=0
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Semidefinite relaxation

Matrix-based formulation:

min  (C,X)+ K

s.t. X,'j’jk — X,'J'7,'k _Xik,jk =-1, i,j,k S [n], I<j < k,
diag(X) =e
k(X)) = 1
X=0

Semidefinite relaxation:
min (C,X)+ K
s.t. X,'ij — X,'j7,'k _Xik,jk = —1, i,j,k S [n], i <j < k,
diag(X) =e
X>=0

M
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Strengthened semidefinite relaxation

Anjos et al. (2006), Hungerldnder & Rend| (2013) also added the so-called
triangle inequalities:

min  (C,X)+ K

sit. Xy — Xjiw — Xuw = =1, i, j,ke[n], i<j<k
diag(X) =e
Xij+ X+ X > =1, 1<i<j<k<n(n-1)/2 (SDPy:)
Xj—Xu—Xpe > =1, 1<i<j<k<n(n—1)/2
=X+ Xae —Xp > —1, 1<i<j<k<n(n-1)/2
—Xij — X + X > —1, 1§i<j<k§n(n—1)/2
X>0

M
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Strengthened semidefinite relaxation

Anjos et al. (2006), Hungerldnder & Rend| (2013) also added the so-called
triangle inequalities:

min  (C,X)+ K

sit. Xy — Xjiw — Xuw = =1, i, j,ke[n], i<j<k
diag(X) =e
Xij+ X+ X > =1, 1<i<j<k<n(n-1)/2 (SDPy:)
Xj— X — X > —1, 1<i<j<k<n(n—1)/2
=X+ Xie = Xpe > =1, 1<i<j<k<n(n-1)/2
—X,'J'—X;k—l—)<jk2—1, 1§l.<j<k§n(n_1)/2
X0

The semidefinite relaxation (SDPy;) is at least as strong than the linear
relaxation of the betweenness model.

> more inequalities: pentagonal inequalities, hexagonal inequalities,
heptagonal inequalities, . .. "

MINOA
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How can we solve the semidefinite relaxation?

» we cannot include all inequalities at the same time
> standard interior-point methods require a running time of O(n%)!

< we must use a customized, approximative first-order method that is
much faster in practice!

nnnnnnnnnnnnnnnnn
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How can we solve the semidefinite relaxation?

» we cannot include all inequalities at the same time

> standard interior-point methods require a running time of O(n%)!
< we must use a customized, approximative first-order method that is
much faster in practice!

We consider the following optimization problem:

min  (C, X)

st. A(X)<a
B(X) =e
X >0
rk(X) =1

nnnnnnnnnnnnnnnnn
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How can we solve the semidefinite relaxation?

» we cannot include all inequalities at the same time

> standard interior-point methods require a running time of O(n%)!
< we must use a customized, approximative first-order method that is
much faster in practice!

We consider the following optimization problem:

min  (C, X)

st. A(X)<a
B(X) =e
X >0
rk(X) =

Proposition (spherical constraint)
Let X € {Y e R™": diag(Y) =e, Y = 0}. Then we have

IX|lr<n,  and rk(X)=1 < [ X||z=n A

nnnnnnnnnnnnnnnnn
uuuuuuuuuuuuuuuuuuuuu
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How can we solve the semidefinite relaxation?

» we cannot include all inequalities at the same time

> standard interior-point methods require a running time of O(n%)!
< we must use a customized, approximative first-order method that is
much faster in practice!

We consider the following optimization problem:

min  (C, X)

st. A(X)<a
B(X) =e
X >0

Proposition (spherical constraint)
Let X € {Y e R™": diag(Y) =e, Y = 0}. Then we have

IX|lr<n,  and rk(X)=1 <= [ X[|p=n A

nnnnnnnnnnnnnnnnn
uuuuuuuuuuuuuuuuuuuuu
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Applying Lagrangian relaxation

primal variable: X € S,
dual variables: A >0, u, Z > 0,

Lagrangian:

LG 1, Z,0) i= (€ X)+AT (AX)=a)+uT (BOX)—e)+5 (IXI - 1) ~(Z, X)

Dual function:

fp,Z,a) = X'QE LX)\ p,Z,a)

where

Dual problem:

Jan Schwiddessen

. e
= O ma) + inf {ZIXIP+(COm) —Z.X)},

cA\ o) =—a A—e p— %nz

CAp)=C+ A" (N + B (n)

M

sup f(\u,Z,a)
A>0, pu, 270, o Aﬁo

MINOA
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Algorithmic approach |

Theorem (Malick & Roupin (2012))

Given dual variables A > 0, p, Z = 0 and o > 0, the minimum of the
Lagrangian L(X; \, u, Z, @) is attained at

X = é (z-c-aT()-B"w)

and the dual function can be written

FOpZa)=—a A—e p— %

Theorem (Malick & Roupin (2012))

Given dual variables (X, p, &) with o > 0, the dual function can be maximized
over Z; the resulting simplified dual function is

n — % e+ AT+ 87w - sz.

f(\ p,) = e fuZ,a)

@
:—aT)\—eTu—E ,

o H [c+ A7) +57 ()] 7‘ 2

where [ - |_ denotes the projection onto the cone of negative semidefinite
matrices. Ao
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Algorithmic approach |

» f(\, u, ) is differentiable at any (A, 4, @) with a > 0 and the partial
derivatives are

ONF(N\, @) = —éA ([c + AT\ + BT(,,L)]_) —a
uF () = —és ([C+AT() +BT(w)]_) —e

Algorithmic idea:
> fix @ > 0 and optimize f(\, u, @) over A > 0 and p

» in the SRFLP setting: by taking a > 0 small enough, we can get
arbitrarily close to the bound of the semidefinite relaxation
Results:

» outperforms all approaches in the literature (faster, stronger bounds)

» by using additional pentagonal, hexagonal and heptagonal
inequalities, SRFLP instances with up to n = 81 could be soIMved for

the first time Aﬁo

Jan Schwiddessen
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The Double Row Facility Layout Problem (DRFLP)

solution is no permutation

gaps are possible
distances may be zero
can distance variables be avoided?

is there any good semidefinite relaxation?

vVVvyYVvYyVvyVvyy

if yes, how can it be solved?
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