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The (weighted) Max-Cut Problem
Given: undirected graph G = (V, E) with edge weights a € RE

Max-Cut Problem

Find a maximum cut in G, i.e., an optimal solution of

gnga‘>/< | Z ajj. (MQ)
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The (weighted) Max-Cut Problem
Given: undirected graph G = (V, E) with edge weights a € RE

Max-Cut Problem

» N'P-hard
» polynomial time solvable in special cases (e.g., planar graphs)

> 0.878-approximation algorithm for a > 0 {fpimene g« fviamsen 199%)

» LP-based approaches efficient for sparse graphs
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Quadratic unconstrained binary optimization (QUBO)

» Laplacian matrix L := Diag(Ae) — A
> weighted adjacency matrix A = (a;);j
> all-ones vector e

Formulation of Max-Cut

max %XTLX

e = s.t. xe {-1,1}"
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Quadratic unconstrained binary optimization (QUBO)

» Laplacian matrix L := Diag(Ae) — A
> weighted adjacency matrix A = (a;);j
> all-ones vector e

Formulation of Max-Cut

max %XTLX
s.t. xe {-1,1}"

Quadratic unconstrained binary optimization

Given C € R™" solve

(MC) &

max x' Cx

s.t. xe{-1,1}". (B

Goal: branch-and-cut solver for (MC) and (QUBO)
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(QUBO) is quite general...

> minimization <> maximization
> linear quadratic objective x' Qx + g ' x
» variables in {0,1}" <> {—1,1}"

» linear constraints Ax = b
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(QUBO) is quite general...

> minimization <> maximization
> linear quadratic objective x' Qx + g ' x
» variables in {0,1}" <> {—1,1}"

» linear constraints Ax = b

Linearly constrained binary quadratic problems

min - x' Qx+q'x
s.t. Ax=5b (BQP)
x €{0,1}"

where Q € R™" g R", A R™" be R™.
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(QUBO) is quite general...

> minimization <> maximization
> linear quadratic objective x' Qx + g ' x
» variables in {0,1}" <> {—1,1}"

» linear constraints Ax = b

Linearly constrained binary quadratic problems

min - x' Qx+q'x
s.t. Ax=5b (BQP)
x €{0,1}"

where Q € R™" g R", A R™" be R™.

» Any BQP instance in n variables can be reformulated as a
QUBO instance in n+ 1 variables! (Lasserre, 2016)
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Semidefinite progamming relaxation

We introduce X = xx ' :

B x'Cx=(Cxx")=(C,X) ®WX=0
B diag(X) =e B rank(X) =1
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Semidefinite progamming relaxation

We introduce X = xx ' :

B x'Cx=(Cxx")y=(C,X) BXx>=0

B diag(X) =e B rank(X) =1
Equivalent formulations (Laurent & Poljak, 1995)
max (C,X)
max x' Cx N s.t. diag(X)=e
s.t. xe{-1,1}" X >0
rank(X) =1

University of Klagenfurt, Department of Mathematics
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Semidefinite progamming relaxation

We introduce X = xx ' :

B x'Cx=(Cxx")y=(C,X) BXx>=0

B diag(X) =e B rank(X) =1
Semidefinite programming relaxation
max (C,X)
max x' Cx < s.t. diag(X)=e
s.t. xe{-1,1}" - X >0
Tk =1
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Semidefinite progamming relaxation

We introduce X = xx ' :

B x'Cx=(Cxx")y=(C,X) BXx>=0

B diag(X) =e B rank(X) =1
Semidefinite programming relaxation
max (C,X)
max x' Cx < s.t. diag(X)=e
s.t. xe{-1,1}" - X >0

Tamk(—1

Optimal value of SDP relaxation is at most. . .
> 57% larger if C > 0. (Nesterov, 1998)
> 1383% |arger for (MC) if a Z 0. (Goemans & Williamson, 1995)

University of Klagenfurt, Department of Mathematics
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Branch-and-cut approaches

» SDP-based solvers in the literature:

> BigMac (2010) > BigCrunch (2016)
> MADAM (2021) »> BiqgBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics



Branch-and-cut approaches

» SDP-based solvers in the literature:

> BigMac (2010) > BigCrunch (2016)
> MADAM (2021) »> BiqgBin (2022)

» (O(n3) triangle inequalities:
X,'J'—i-X,'k—f-Xij—l, i<j<k
X,'J'—X,'k—X_,'kz—l, i<j<k

_Xij+Xik_)<jk>_17 i<j<k
—X,'J'—X,'k—i-XJ'k -1, i<j<k

IV
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Branch-and-cut approaches

» SDP-based solvers in the literature:

> BigMac (2010) > BigCrunch (2016)
> MADAM (2021) > BigBin (2022)

» (O(n3) triangle inequalities:

Xij+ X+ Xpe > =1, i<j<k
Xij =X = Xpe > =1, i<j<k
=Xij + X — Xje 2 =1, i<j<k
—Xij — X + Xje =2 =1, i<j<k

> MADAM & BigBin: O(n°) pentagonal, O(n") heptagonal cuts

> exact separation only for triangle inequalities
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Lagrangian relaxation
SDP with a subset of m triangle inequalities (A;, X) < b;:
f* = max (C,X)

s.t. Xe€& (edag(X)=e,X=0)
A(X) < b
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Lagrangian relaxation
SDP with a subset of m triangle inequalities (A;, X) < b;:
f* = max (C,X)
s.t. Xe€& (edag(X)=e,X=0)
A(X)<b

Dualizing A(X) < b yields:
partial Lagrangian: £(X,7) == (C,X) 4+~ (b — A(X))
dual function: f(7) :== max £(X,7) = b' C—A"(),X

ual function: f(v) max (X.7) v+ ?22(( A’ (), X)

> adjoint operator: AT (v) = >, viAi
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Lagrangian relaxation
SDP with a subset of m triangle inequalities (A;, X) < b;:

f* = max (C,X)
s.t. Xe€& (edag(X)=e,X=0)
A(X)<b
Dualizing A(X) < b yields:

partial Lagrangian: £(X,7) == (C,X) 4+~ (b — A(X))
| function: £(7) = X,7)=b" — A7), X
dual function: f(7) r)?ggﬁ( ,Y)=b v+ &122<<C A (7), X)

> adjoint operator: AT (v) = >, viAi
> weak duality: £* < f(y) for all v € R

» dual problem:

= min f(7)
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Evaluating f
f(y)=»b" — AT (), X
() = by +max(C— A (7). X)
> for C = C — AT (7), we have to solve

max (C, X)
s.t. Xeé& (+)

» BigMac & BigBin use interior-point methods
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max (C, X)
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» BigMac & BigBin use interior-point methods

Burer-Monteiro factorization for SDPs (surer & Monteiro, 2003)

Factorize X = VTV =0, V = (v1|...|v,) € R®*" k < n, and
solve

max (C,VTV)

s.t. VIvVec. (Sl
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Evaluating f
f(y)=»b" — AT (), X
() = by +max(C— A (7). X)
> for C = C — AT (7), we have to solve

max (C, X)
s.t. Xeé& (+)

» BigMac & BigBin use interior-point methods

Burer-Monteiro factorization for SDPs (surer & Monteiro, 2003)

Factorize X = VTV =0, V = (v1|...|v,) € R®*" k < n, and
solve

max (C,VTV)

s.t. VIvVec. (Sl

» VIiVeEs|vl=1i=1,...,n
> (%) < (SDP-vec) for k = [\/Qn —‘ (Barvinok, 1995; Pataki, 1998)
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Geometric interpretation

Optimization problem (SDP-vec)

n
max (C,V'V)= Z Civi' v
ij=1
s.t. lvill=1,i=1,...,n

(SDP-vec)

Vil

i = il - i - cos £(vi, v;)

= cos £(vj, vj)
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The MIXing MethOd (Wang et al., 2018)

Optimization problem (SDP-vec)

n
max Cjvi'v;
.Z_: s (SDP-vec)
ij=1
s.t. |lvill=1,i=1,...,n
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The |\/||X|ng Method (Wang et al., 2018)

Optimization problem (SDP-vec)

n

max Cjvi'v;
.Z_: s (SDP-vec)
ij=1
s.t. |lvill=1,i=1,...,n

Coordinate ascent

We fix all but one column v;. (SDP-vec) reduces to

max g'v; = |gl| - [|vil| - cos £(g )
s.t. ||vi| =1, v € RK

where g = 37 1 Givp=V - Cj) — Givi.
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The |\/||X|ng Method (Wang et al., 2018)

Optimization problem (SDP-vec)

max Cjvi'v;
.Z_: s (SDP-vec)
ij=1
s.t. |lvill=1,i=1,...,n

Coordinate ascent

We fix all but one column v;. (SDP-vec) reduces to

max g'v; = |gl| - [|vil| - cos £(g )
s.t. ||vi| =1, v € RK

» closed-form solution: v; = £ for g # 0
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Low-rank methods

Algorithm 1: Mixing Method (wang et a., 2018)
Input: € € R™" with diag(C) =0, k € N>,
Output: approximate solution V = (v1|...|v,) € R¥*" of (SDP-vec)
for i+ 1 to ndo
L vi < random vector on the unit sphere S¥~1;

while not yet converged do
for i < 1 to n do

V-G,
Vi ¢ —d_-
L VGl
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Low-rank methods

Algorithm 1: Mixing Method (wang et a., 2018)
Input: € € R™" with diag(C) =0, k € N>,
Output: approximate solution V = (v1|...|v,) € R¥*" of (SDP-vec)
for i+ 1 to ndo
L vi < random vector on the unit sphere S¥~1;

while not yet converged do
for i < 1 to n do

V-G,
Vi ¢ —d_-
L VGl

Theorem: Local linear convergence (wang et at., 2018)

Let k > v/2n. If the iterates do not degenerate, then the Mixing Method
converges locally to the global optimum of (SDP-vec) at a linear rate.
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Low-rank methods

Algorithm 1: Mixing Method (wang et a., 2018)
Input: € € R™" with diag(C) =0, k € N>,
Output: approximate solution V = (vy]...|v,) € R¥*" of (SDP-vec)
for i+ 1 to ndo
L vi < random vector on the unit sphere S¥~1;

while not yet converged do
for i < 1 to n do

V-G,
Vi ¢ —d_-
L VGl

Theorem: Local linear convergence (wang et at., 2018)

Let k > +/2n. If the iterates do not degenerate, then the Mixing Method
converges locally to the global optimum of (SDP-vec) at a linear rate.

» block-coordinate maximization (Erdogdu et al, 2021)
» momentum-based acceleration (kim et al., 2021, preprint)

» bilinear decomposition, ADMM (Chen & Goulart, 2023, preprint)
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When do we stop the mixing method?

> Vi matrix V after iteration k
> fi = (C, V] Vi), function value after iteration k

> Ay = f — fx_1, objective improvement in iteration k
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When do we stop the mixing method?

> Vi matrix V after iteration k
> £ =(C, V, Vi), function value after iteration k

> Ay = f — fx_1, objective improvement in iteration k

Stopping criterion: relative step tolerance

e IVic1—Vidle -
> stop if m <e=0.01
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> Ay = f — fx_1, objective improvement in iteration k
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> stop if m <e=0.01

Stopping criterion: estimated gap (see mrxsat solver, Wang & Kolter, 2019)

> stopifsz%small:f’*sz+s
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When do we stop the mixing method?

> Vi matrix V after iteration k
> £ =(C, V, Vi), function value after iteration k

> Ay = f — fx_1, objective improvement in iteration k

Stopping criterion: relative step tolerance

e IViei—Ville ~
> stop if m <e=0.01

Stopping criterion: estimated gap (see mrxsat solver, Wang & Kolter, 2019)

> stopifsz%small:f*xfk+s

> caveat: the actual optimum can be smaller or larger!
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When do we stop the mixing method?

> Vi matrix V after iteration k
> £ =(C, V, Vi), function value after iteration k

> Ay = f — fx_1, objective improvement in iteration k

Stopping criterion: relative step tolerance

e Vi1 —Ville ~
> StOp if m <e=0.01

Stopping criterion: estimated gap (see mrxsat solver, Wang & Kolter, 2019)

> stopifsz%small:f*xfk+s

> caveat: the actual optimum can be smaller or larger!

How do we bound f* from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics



Upper bounds via weak duality

Primal-dual pair

max (C, X) min e'y
s.t. diag(X)=¢e s.t. Diag(y)—C =0
X =0 y €R”
(SDP) (DSDP)
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Upper bounds via weak duality

Primal-dual pair

max (C, X) min e'y
s.t. diag(X)=¢e s.t. Diag(y)—C =0
X =0 y €R”
(SDP) (DSDP)

Proposition (see wang et i, 2018)

Let V* = lim Vi. Then y; = ||[V* - 2 is optimal for (DSDP).
k—00
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Upper bounds via weak duality

Primal-dual pair

max (C, X) min e'y
s.t. diag(X)=¢e s.t. Diag(y)—C =0
X =0 y €R”
(SDP) (DSDP)

Proposition (see wang et i, 2018)

Let V* = lim Vi. Then y; = ||[V* - 2 is optimal for (DSDP).
k—00

After stopping the Mixing Method with approximate V:

> approximate but non-feasible dual variables: y; = ||V - f(;)|\2
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Upper bounds via weak duality

Primal-dual pair

max (C, X) min e'y
s.t. diag(X)=¢e s.t. Diag(y)—C =0
X =0 y €R”
(SDP) (DSDP)

Proposition (see wang et i, 2018)

Let V* = lim Vi. Then y; = ||[V* - 2 is optimal for (DSDP).
k—00

After stopping the Mixing Method with approximate V:

> approximate but non-feasible dual variables: y; = ||\7 f(;)|\2

> feasible dual variables: y = § — Amin (Diag(y) - C‘) e
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Approximately solving the dual problem

. o T _gT
Tzlgf(v)—gg{b 7+ max(C— A (7),X>}

» f is nonsmooth
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Approximately solving the dual problem

. o T _gT
Tzlgf(v)—gg{b 7+ max(C— A (7),X>}

» f is nonsmooth
» evaluation of f at v € R yields

> function value f(v)
> subgradient g = b — A(X*) of f at ~y
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Approximately solving the dual problem

mip () = min {67+ pax(c — 4.0}

>0

» f is nonsmooth
» evaluation of f at v € R yields

> function value f(v)
> subgradient g = b — A(X*) of f at ~y

» dynamic bundle approach for SDPs by Gruber & Rendl, 2003

» implementation similar to BigMac and BigBin
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Solver features

Speed:
> fast approximate function and subgradient evaluation
» usually a single eigenvalue computation per B&B node

> tradeoff between number of B&B nodes and overall time spent
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Solver features

Speed:
> fast approximate function and subgradient evaluation
» usually a single eigenvalue computation per B&B node

> tradeoff between number of B&B nodes and overall time spent

Branching:
» decision based on dual information

> active cutting planes are passed down in B&B tree

Primal heuristic:
» Goemans-Williamson hyperplane rounding

» one-opt and two-opt local search
» ‘biased’ hyperplanes
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Goemans-Williamson hyperplane rounding

» choose random hyperplane /1 © 5" ' and set x; = sign(h v;)
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Goemans-Williamson hyperplane rounding

» choose random hyperplane /1 © 5" ' and set x; = sign(h v;)

N

» local search to improve solution (one-opt and two-opt)

» good candidates are close to hyperplane, i.e., |hT v;| small

Jan Schwiddessen University of Klagenfurt, Department of Mathematics



Goemans-Williamson hyperplane rounding

» choose random hyperplane /1 © 5" ' and set x; = sign(h v;)
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» good candidates are close to hyperplane, i.e., |hT v;| small

» construct a ‘biased hyperplane’ h* € arg maxHh||:1HVThH2
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Goemans-Williamson hyperplane rounding

» choose random hyperplane /1 © 5" ' and set x; = sign(h v;)
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» good candidates are close to hyperplane, i.e., |hT v;| small
» construct a ‘biased hyperplane’ h* € arg maxHh||:1HVThH2

> h* is eigenvector to largest eigenvalue of VV'T
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Goemans-Williamson hyperplane rounding

» choose random hyperplane /1 © 5" ' and set x; = sign(h v;)

I\

——

» local search to improve solution (one-opt and two-opt)

» good candidates are close to hyperplane, i.e., |hT v;| small
» construct a ‘biased hyperplane’ h* € arg maxHh||:1HVThH2

> h* is eigenvector to largest eigenvalue of VV'T
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Computational results

» Erdos—Rényi graphs with n = 100 and edge probability %
(unweighted)

BigMac MADAM our solver
time nodes time nodes | time nodes
g05.100.0 | 555.16 531 08.33 195 | 17.19 751
g05.100.1 | 3547.17 3643 | 494.10 705 | 84.78 3888
g05.100.2 115.87 127 | 40.07 43 5.31 305
g05.100.3 | 1308.85 1215 | 129.60 497 | 29.48 1292
g05.100.4 71.03 69 9.71 11 2.68 99
g05.100.5 116.16 129 28.63 31 5.31 203
g05_100.6 177.22 193 29.52 47 | 6.52 253
g05.100.7 | 332.35 337 | 75.31 73 | 11.74 495
g05.100.8 291.28 275 35.78 67 | 8.50 367
g05.100.9 321.10 277 | 47.34 101 9.57 403

instance

Table: CPU times (s) and B&B nodes for ‘g05’ instances.
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Conclusion and future work

Conclusion:
> significant speedup of ‘traditional’ approaches by recent
low-rank methods
» improvements by

» branching decision based on dual information
P passing cuts down
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Conclusion:
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» branching decision based on dual information
P passing cuts down

Future work:
» include more cuts
> use parallelization

» apply to quadratically constrained problems
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Conclusion and future work

Conclusion:

> significant speedup of ‘traditional’ approaches by recent
low-rank methods

» improvements by

» branching decision based on dual information
P passing cuts down

Future work:
» include more cuts
> use parallelization

» apply to quadratically constrained problems

Thank you!
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