

May 24, 2023

Solving Max-Cut using Low-Rank Methods

Joint work with Valentin Durante, Federal University of Toulouse

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Definition: induced cut

For $S \subseteq V$, the set of edges

$$\delta(S) := \{ ij \in E : i \in S, j \notin S \}$$

is called the *cut* induced by *S*.

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Definition: induced cut

For $S \subseteq V$, the set of edges

$$\delta(S) := \{ ij \in E : i \in S, j \notin S \}$$

is called the *cut* induced by *S*.

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Max-Cut Problem

Find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{ij \in \delta(S)} a_{ij}. \tag{MC}$$

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Max-Cut Problem

- ightharpoons \mathcal{NP} -hard
- polynomial time solvable in special cases (e.g., planar graphs)
- ▶ 0.878-approximation algorithm for $a \ge 0$ (Goemans & Williamson, 1995)
- ► LP-based approaches efficient for sparse graphs

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - ▶ all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{ll} \max & \frac{1}{4}x^{\top}Lx \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - ▶ all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{c} \max & \frac{1}{4}x^{\top}Lx \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization

Given $C \in \mathbb{R}^{n \times n}$, solve

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - ▶ all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{c} \max & \frac{1}{4}x^{\top}Lx \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization

Given $C \in \mathbb{R}^{n \times n}$, solve

Goal: branch-and-cut solver for (MC) and (QUBO)

(QUBO) is quite general...

- **▶** minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- linear constraints Ax = b

(QUBO) is quite general...

- ▶ minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- linear constraints Ax = b

Linearly constrained binary quadratic problems

min
$$x^{\top}Qx + q^{\top}x$$

s. t. $Ax = b$
 $x \in \{0,1\}^n$ (BQP)

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

(QUBO) is quite general...

- ▶ minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- linear constraints Ax = b

Linearly constrained binary quadratic problems

$$\min_{x \in Qx + q^T x} x$$
s. t. $Ax = b$

$$x \in \{0, 1\}^n$$
(BQP)

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Any BQP instance in n variables can be reformulated as a QUBO instance in n+1 variables! (Lasserre, 2016)

Semidefinite progamming relaxation

We introduce $X := xx^{\top}$:

$$\blacksquare x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succeq 0$$

$$\blacksquare X \succeq 0$$

$$\blacksquare$$
 diag(X) = e

$$ightharpoonup$$
 rank $(X)=1$

Semidefinite programming relaxation

We introduce $X := xx^{\top}$:

- $\blacksquare x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succ 0$

 \blacksquare diag(X) = e

ightharpoonup rank(X) = 1

Equivalent formulations (Laurent & Poljak, 1995)

$$\max \quad x^{\top} Cx$$

s. t. $x \in \{-1, 1\}^n$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\max \langle C, X \rangle$$

s. t.
$$\operatorname{diag}(X) = e$$

 $X \succ 0$

$$rank(X) = 1$$

Semidefinite programming relaxation

We introduce $X := xx^{\top}$:

- $\blacksquare x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succ 0$

 \blacksquare diag(X) = e

 \blacksquare rank(X) = 1

Semidefinite programming relaxation

$$\max_{\mathbf{s.t.}} x^{\top} Cx$$

$$\mathbf{s.t.} x \in \{-1, 1\}^n \leq$$

max
$$\langle C, X \rangle$$

s.t. $\operatorname{diag}(X) = e$
 $X \succeq 0$
 $\operatorname{rank}(X) = 1$

Semidefinite progamming relaxation

We introduce $X := xx^{\top}$:

$$\blacksquare x^{\top} C x = \langle C, x x^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succeq 0$$

$$\blacksquare$$
 diag(X) = e

$$ightharpoonup$$
 rank $(X) = 1$

Semidefinite programming relaxation

$$\max_{\mathbf{x}} x^{\top} C \mathbf{x}$$
s. t. $x \in \{-1, 1\}^n$

$$\leq \max_{\mathbf{x}} \langle C, X \rangle$$
s. t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$

$$\operatorname{rank}(X) = 1$$

Optimal value of SDP relaxation is at most...

- ▶ 57% larger if $C \succeq 0$. (Nesterov, 1998)
- ▶ 13.83% larger for (MC) if $a \ge 0$. (Goemans & Williamson, 1995)

Branch-and-cut approaches

► SDP-based solvers in the literature:

- ▶ BiqMac (2010)
- ► MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

Branch-and-cut approaches

- SDP-based solvers in the literature:
 - ▶ BiqMac (2010)
 ▶ MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

 \triangleright $\mathcal{O}(n^3)$ triangle inequalities:

$$X_{ij} + X_{ik} + X_{jk} \ge -1, \quad i < j < k$$
 $X_{ij} - X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} + X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} - X_{ik} + X_{jk} \ge -1, \quad i < j < k$

Branch-and-cut approaches

- SDP-based solvers in the literature:
 - ▶ BiqMac (2010)▶ MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

 \triangleright $\mathcal{O}(n^3)$ triangle inequalities:

$$X_{ij} + X_{ik} + X_{jk} \ge -1, \quad i < j < k$$
 $X_{ij} - X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} + X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} - X_{ik} + X_{jk} \ge -1, \quad i < j < k$

- ▶ MADAM & BiqBin: $\mathcal{O}(n^5)$ pentagonal, $\mathcal{O}(n^7)$ heptagonal cuts
- exact separation only for triangle inequalities

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s. t. $X \in \mathcal{E} \quad (\Leftrightarrow \operatorname{diag}(X) = e, X \succeq 0)$
 $A(X) \leq b$

SDP with a subset of *m* triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s. t. $X \in \mathcal{E} \quad (\Leftrightarrow \operatorname{diag}(X) = e, X \succeq 0)$
 $A(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle + \gamma^{\top}(b - \mathcal{A}(X))$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = \mathbf{b}^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

• adjoint operator: $\mathcal{A}^{\top}(\gamma) := \sum_{i=1}^{m} \gamma_i A_i$

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max_{X \in \mathcal{E}} \langle C, X \rangle$$

s. t. $X \in \mathcal{E}$ (\Leftrightarrow diag(X) = e , $X \succeq 0$)
 $\mathcal{A}(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle + \gamma^{\top}(b - \mathcal{A}(X))$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = \mathbf{b}^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

- adjoint operator: $\mathcal{A}^{\top}(\gamma) \coloneqq \sum_{i=1}^{m} \gamma_i A_i$
- weak duality: $f^* \leq f(\gamma)$ for all $\gamma \in \mathbb{R}_+^m$

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s.t. $X \in \mathcal{E} \quad (\Leftrightarrow \operatorname{diag}(X) = e, X \succeq 0)$
 $\mathcal{A}(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle + \gamma^{\top}(b - \mathcal{A}(X))$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = \mathbf{b}^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

- adjoint operator: $\mathcal{A}^{\top}(\gamma) \coloneqq \sum_{i=1}^{m} \gamma_i A_i$
- weak duality: $f^* \leq f(\gamma)$ for all $\gamma \in \mathbb{R}_+^m$
- dual problem:

$$f^* = \min_{\gamma > 0} f(\gamma)$$

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$$

ightharpoonup for $\tilde{C} = C - \mathcal{A}^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{C}, X \rangle \\ \text{s.t.} & X \in \mathcal{E} \end{array} \tag{*}$$

► BiqMac & BiqBin use interior-point methods

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - A^{\top}(\gamma), X \rangle$$

• for $\tilde{C} = C - A^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{C}, X \rangle \\ \text{s. t.} & X \in \mathcal{E} \end{array} \tag{*}$$

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize $X = V^{\top}V \succeq 0$, $V = (v_1|\dots|v_n) \in \mathbb{R}^{k \times n}$, $k \leq n$, and solve

$$\max_{\mathbf{S}. \mathbf{t}.} \ \langle \tilde{C}, V^{\top} V \rangle$$
 s. t. $V^{\top} V \in \mathcal{E}.$ (SDP-vec)

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - A^{\top}(\gamma), X \rangle$$

• for $\tilde{C} = C - A^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{\mathcal{C}}, X \rangle \\ \text{s. t.} & X \in \mathcal{E} \end{array} \tag{*}$$

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize $X = V^{\top}V \succeq 0$, $V = (v_1|\dots|v_n) \in \mathbb{R}^{k \times n}$, $k \leq n$, and solve

$$\begin{array}{ll} \max & \langle \tilde{C}, V^\top V \rangle \\ \text{s.t.} & V^\top V \in \mathcal{E}. \end{array}$$
 (SDP-vec)

- $V V \in \mathcal{E} \Leftrightarrow ||v_i|| = 1, i = 1, \ldots, n$
- $(*) \Leftrightarrow (SDP\text{-vec}) \text{ for } k = \lceil \sqrt{2n} \rceil$ (Barvinok, 1995; Pataki, 1998)

Geometric interpretation

Optimization problem (SDP-vec)

$$\max \quad \langle \tilde{C}, V^\top V \rangle = \sum_{i,j=1}^n \tilde{C}_{ij} v_i^\top v_j$$
 s.t. $\|v_i\| = 1, \ i = 1, \dots, n$ (SDP-vec)

$$v_i^\top v_j = ||v_i|| \cdot ||v_j|| \cdot \cos \angle (v_i, v_j)$$
$$= \cos \angle (v_i, v_j)$$

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s.t. $\|v_i\| = 1, \ i = 1, \dots, n$

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate ascent

We fix all but one column v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\mathsf{T}} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \measuredangle(\mathbf{g}, \mathbf{v}_i)$$

s. t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$\mathbf{g} = \sum_{i=1, i \neq i}^{n} \tilde{C}_{ij} \mathbf{v}_{j} = \mathbf{V} \cdot \tilde{C}_{(i)} - \tilde{C}_{ii} \mathbf{v}_{i}$$
.

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^n \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate ascent

We fix all but one column v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\top} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \angle(\mathbf{g}, \mathbf{v}_i)$$

s.t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1, j \neq i}^{n} \tilde{C}_{ij} v_j = V \cdot \tilde{C}_{(i)} - \tilde{C}_{ii} v_i$$
.

▶ closed-form solution: $v_i = \frac{g}{\|g\|}$ for $g \neq 0$

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

```
Input: \tilde{C} \in \mathbb{R}^{n \times n} with \operatorname{diag}(\tilde{C}) = 0, k \in \mathbb{N}_{\geq 1} Output: approximate solution V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n} of (SDP-vec) for i \leftarrow 1 to n do v_i \leftarrow v_i \leftarrow v_i random vector on the unit sphere \mathcal{S}^{k-1};
```

while not yet converged do

$$\begin{array}{c|c} \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & v_i \leftarrow \frac{V \cdot \tilde{C}_{(i)}}{\|V \cdot \tilde{C}_{(i)}\|}; \end{array}$$

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

```
Input: \tilde{C} \in \mathbb{R}^{n \times n} with \operatorname{diag}(\tilde{C}) = 0, k \in \mathbb{N}_{\geq 1} Output: approximate solution V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n} of (SDP-vec) for i \leftarrow 1 to n do v_i \leftarrow v_i \leftarrow v_i random vector on the unit sphere \mathcal{S}^{k-1};
```

while not yet converged do

Theorem: Local linear convergence (Wang et al., 2018)

Let $k > \sqrt{2n}$. If the iterates do not degenerate, then the Mixing Method converges locally to the global optimum of (SDP-vec) at a linear rate.

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: $\tilde{C} \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(\tilde{C}) = 0$, $k \in \mathbb{N}_{\geq 1}$ **Output:** approximate solution $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ of (SDP-vec) **for** $i \leftarrow 1$ **to** n **do** $v_i \leftarrow v_i \leftarrow v_i$ random vector on the unit sphere \mathcal{S}^{k-1} ;

while not yet converged do

for
$$i \leftarrow 1$$
 to n do
$$v_i \leftarrow \frac{V \cdot \tilde{C}_{(i)}}{\|V \cdot \tilde{C}_{(i)}\|};$$

Theorem: Local linear convergence (Wang et al., 2018)

Let $k > \sqrt{2n}$. If the iterates do not degenerate, then the Mixing Method converges locally to the global optimum of (SDP-vec) at a linear rate.

- ▶ block-coordinate maximization (Erdogdu et al, 2021)
- ► momentum-based acceleration (Kim et al., 2021, preprint)
- bilinear decomposition, ADMM (Chen & Goulart, 2023, preprint)

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $f_k = \langle \tilde{C}, V_k^\top V_k \rangle$, function value after iteration k
- $ightharpoonup \Delta_k = f_k f_{k-1}$, objective improvement in iteration k

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $ightharpoonup f_k = \langle \tilde{C}, V_k^\top V_k \rangle$, function value after iteration k
- $ightharpoonup \Delta_k = f_k f_{k-1}$, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if $\frac{\|V_{k-1}-V_k\|_F}{1+\|V_{k-1}\|_F}<\varepsilon\approx 0.01$

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $f_k = \langle \tilde{C}, V_k^\top V_k \rangle$, function value after iteration k
- $ightharpoonup \Delta_k = f_k f_{k-1}$, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if $\frac{\|V_{k-1} - V_k\|_F}{1 + \|V_{k-1}\|_F} < \varepsilon \approx 0.01$

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

• stop if
$$\varepsilon = \frac{\Delta_{k-1}\Delta_k}{\Delta_{k-1}-\Delta_k}$$
 small $\Rightarrow f^* \approx f_k + \varepsilon$

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $f_k = \langle \tilde{C}, V_k^\top V_k \rangle$, function value after iteration k
- $ightharpoonup \Delta_k = f_k f_{k-1}$, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop **if** $\frac{\|V_{k-1} - V_k\|_F}{1 + \|V_{k-1}\|_F} < \varepsilon \approx 0.01$

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

- stop if $\varepsilon = \frac{\Delta_{k-1}\Delta_k}{\Delta_{k-1}-\Delta_k}$ small $\Rightarrow f^* \approx f_k + \varepsilon$
- caveat: the actual optimum can be smaller or larger!

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $f_k = \langle \tilde{C}, V_k^\top V_k \rangle$, function value after iteration k
- $ightharpoonup \Delta_k = f_k f_{k-1}$, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if $\frac{\|V_{k-1} - V_k\|_F}{1 + \|V_{k-1}\|_F} < \varepsilon \approx 0.01$

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

- stop if $\varepsilon = \frac{\Delta_{k-1}\Delta_k}{\Delta_{k-1}-\Delta_k}$ small $\Rightarrow f^* \approx f_k + \varepsilon$
- caveat: the actual optimum can be smaller or larger!

How do we bound f^* from above (dualbound)?

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{\mathcal{C}}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{\mathcal{C}} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (SDP)

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{\mathcal{C}}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{\mathcal{C}} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

lacktriangle approximate but non-feasible dual variables: $ilde{y}_i = \| ilde{V} \cdot ilde{\mathcal{C}}_{(i)}\|_2$

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

- lacktriangle approximate but non-feasible dual variables: $ilde{y}_i = \| ilde{V} \cdot ilde{\mathcal{C}}_{(i)}\|_2$
- lacksquare feasible dual variables: $y = ilde{y} \lambda_{\sf min} \left(\mathsf{Diag}(ilde{y}) ilde{\mathcal{C}}
 ight) e$

Approximately solving the dual problem

$$\min_{\gamma \geq 0} f(\gamma) = \min_{\gamma \geq 0} \left\{ b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle \right\}$$

▶ *f* is nonsmooth

Approximately solving the dual problem

$$\min_{\gamma \geq 0} f(\gamma) = \min_{\gamma \geq 0} \left\{ b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle \right\}$$

- ▶ f is nonsmooth
- evaluation of f at $\gamma \in \mathbb{R}_+^m$ yields
 - function value $f(\gamma)$
 - subgradient $g = b A(X^*)$ of f at γ

Approximately solving the dual problem

$$\min_{\gamma \geq 0} f(\gamma) = \min_{\gamma \geq 0} \left\{ b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle \right\}$$

- f is nonsmooth
- evaluation of f at $\gamma \in \mathbb{R}_+^m$ yields
 - function value $f(\gamma)$
 - subgradient $g = b A(X^*)$ of f at γ
- dynamic bundle approach for SDPs by Gruber & Rendl, 2003
- implementation similar to BiqMac and BiqBin

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ usually a single eigenvalue computation per B&B node
- tradeoff between number of B&B nodes and overall time spent

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ usually a single eigenvalue computation per B&B node
- tradeoff between number of B&B nodes and overall time spent

Branching:

- decision based on dual information
- active cutting planes are passed down in B&B tree

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ usually a single eigenvalue computation per B&B node
- tradeoff between number of B&B nodes and overall time spent

Branching:

- decision based on dual information
- active cutting planes are passed down in B&B tree

Primal heuristic:

- Goemans-Williamson hyperplane rounding
 - one-opt and two-opt local search
 - 'biased' hyperplanes

▶ choose random hyperplane $h \in S^{k-1}$ and set $x_i = \text{sign}(h^\top v_i)$

Jan Schwiddessen

- local search to improve solution (one-opt and two-opt)
- **b** good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small

- local search to improve solution (one-opt and two-opt)
- **b** good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- ▶ construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^\top h\|^2$

- ▶ local search to improve solution (one-opt and two-opt)
- **b** good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- ightharpoonup construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^{\top}h\|^2$
- \blacktriangleright h* is eigenvector to largest eigenvalue of VV^{\top}

- ▶ local search to improve solution (one-opt and two-opt)
- **b** good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- ightharpoonup construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^{\top}h\|^2$
- \blacktriangleright h* is eigenvector to largest eigenvalue of VV^{\top}

Computational results

Frdős–Rényi graphs with n=100 and edge probability $\frac{1}{2}$ (unweighted)

instance	BiqMac		MADAM		our solver	
	time	nodes	time	nodes	time	nodes
g05_100.0	555.16	531	98.33	195	17.19	751
$g05_100.1$	3547.17	3643	494.10	705	84.78	3888
g05_100.2	115.87	127	40.07	43	5.31	305
g05_100.3	1308.85	1215	129.60	497	29.48	1292
g05_100.4	71.03	69	9.71	11	2.68	99
$g05_{-}100.5$	116.16	129	28.63	31	5.31	203
$g05_{-}100.6$	177.22	193	29.52	47	6.52	253
$g05_{-}100.7$	332.35	337	75.31	73	11.74	495
g05_100.8	291.28	275	35.78	67	8.50	367
$g05_100.9$	321.10	277	47.34	101	9.57	403

Table: CPU times (s) and B&B nodes for 'g05' instances.

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- improvements by
 - branching decision based on dual information
 - passing cuts down

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- improvements by
 - branching decision based on dual information
 - passing cuts down

Future work:

- include more cuts
- use parallelization
- apply to quadratically constrained problems

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- improvements by
 - branching decision based on dual information
 - passing cuts down

Future work:

- include more cuts
- use parallelization
- apply to quadratically constrained problems

Thank you!