
Solving Max-Cut using Low-Rank Methods
Joint work with Valentin Durante, Federal University of Toulouse

May 24, 2023

1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 1

The (weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights a ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights a ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Definition: induced cut

For S ⊆ V , the set of edges

δ(S) := {ij ∈ E : i ∈ S , j /∈ S}

is called the cut induced by S .

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights a ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Definition: induced cut

For S ⊆ V , the set of edges

δ(S) := {ij ∈ E : i ∈ S , j /∈ S}

is called the cut induced by S .

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights a ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut Problem

Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
ij∈δ(S)

aij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights a ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut Problem
▶ NP-hard
▶ polynomial time solvable in special cases (e.g., planar graphs)

▶ 0.878-approximation algorithm for a ≥ 0 (Goemans & Williamson, 1995)
(Mahajan & Ramesh, 1995)

▶ LP-based approaches efficient for sparse graphs

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

Quadratic unconstrained binary optimization (QUBO)

▶ Laplacian matrix L := Diag(Ae)− A
▶ weighted adjacency matrix A = (aij)ij
▶ all-ones vector e

Formulation of Max-Cut

(MC)⇔ max 1
4x

⊤Lx
s. t. x ∈ {−1, 1}n

Quadratic unconstrained binary optimization

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

Goal: branch-and-cut solver for (MC) and (QUBO)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

Quadratic unconstrained binary optimization (QUBO)

▶ Laplacian matrix L := Diag(Ae)− A
▶ weighted adjacency matrix A = (aij)ij
▶ all-ones vector e

Formulation of Max-Cut

(MC)⇔ max 1
4x

⊤Lx
s. t. x ∈ {−1, 1}n

Quadratic unconstrained binary optimization

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

Goal: branch-and-cut solver for (MC) and (QUBO)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

Quadratic unconstrained binary optimization (QUBO)

▶ Laplacian matrix L := Diag(Ae)− A
▶ weighted adjacency matrix A = (aij)ij
▶ all-ones vector e

Formulation of Max-Cut

(MC)⇔ max 1
4x

⊤Lx
s. t. x ∈ {−1, 1}n

Quadratic unconstrained binary optimization

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

Goal: branch-and-cut solver for (MC) and (QUBO)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

(QUBO) is quite general...

▶ minimization ↔ maximization

▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables! (Lasserre, 2016)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

(QUBO) is quite general...

▶ minimization ↔ maximization

▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables! (Lasserre, 2016)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

(QUBO) is quite general...

▶ minimization ↔ maximization

▶ linear quadratic objective x⊤Qx + q⊤x

▶ variables in {0, 1}n ↔ {−1, 1}n

▶ linear constraints Ax = b

Linearly constrained binary quadratic problems

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

▶ Any BQP instance in n variables can be reformulated as a
QUBO instance in n + 1 variables! (Lasserre, 2016)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

Semidefinite progamming relaxation

We introduce X := xx⊤:

■ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
■ diag(X) = e

■ X ⪰ 0

■ rank(X) = 1

max x⊤Cx
s. t. x ∈ {−1, 1}n

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Semidefinite progamming relaxation

We introduce X := xx⊤:

■ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
■ diag(X) = e

■ X ⪰ 0

■ rank(X) = 1

Equivalent formulations (Laurent & Poljak, 1995)

max x⊤Cx
s. t. x ∈ {−1, 1}n

⇔
max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Semidefinite progamming relaxation

We introduce X := xx⊤:

■ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
■ diag(X) = e

■ X ⪰ 0

■ rank(X) = 1

Semidefinite programming relaxation

max x⊤Cx
s. t. x ∈ {−1, 1}n

≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Semidefinite progamming relaxation

We introduce X := xx⊤:

■ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
■ diag(X) = e

■ X ⪰ 0

■ rank(X) = 1

Semidefinite programming relaxation

max x⊤Cx
s. t. x ∈ {−1, 1}n

≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

Optimal value of SDP relaxation is at most. . .

▶ 57% larger if C ⪰ 0. (Nesterov, 1998)

▶ 13.83% larger for (MC) if a ≥ 0. (Goemans & Williamson, 1995)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Branch-and-cut approaches

▶ SDP-based solvers in the literature:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

▶ O(n3) triangle inequalities:

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k

▶ MADAM & BiqBin: O(n5) pentagonal, O(n7) heptagonal cuts
▶ exact separation only for triangle inequalities

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Branch-and-cut approaches

▶ SDP-based solvers in the literature:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

▶ O(n3) triangle inequalities:

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k

▶ MADAM & BiqBin: O(n5) pentagonal, O(n7) heptagonal cuts
▶ exact separation only for triangle inequalities

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Branch-and-cut approaches

▶ SDP-based solvers in the literature:

▶ BiqMac (2010)
▶ MADAM (2021)

▶ BiqCrunch (2016)
▶ BiqBin (2022)

▶ O(n3) triangle inequalities:

Xij + Xik + Xjk ≥ −1, i < j < k

Xij − Xik − Xjk ≥ −1, i < j < k

−Xij + Xik − Xjk ≥ −1, i < j < k

−Xij − Xik + Xjk ≥ −1, i < j < k

▶ MADAM & BiqBin: O(n5) pentagonal, O(n7) heptagonal cuts
▶ exact separation only for triangle inequalities

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Lagrangian relaxation

SDP with a subset of m triangle inequalities ⟨Ai ,X ⟩ ≤ bi :

f ∗ := max ⟨C ,X ⟩
s. t. X ∈ E (⇔ diag(X) = e ,X ⪰ 0)

A(X) ≤ b

Dualizing A(X) ≤ b yields:

partial Lagrangian: L(X , γ) := ⟨C ,X ⟩+ γ⊤(b −A(X))

dual function: f (γ) := max
X∈E
L(X , γ) = b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

▶ adjoint operator: A⊤(γ) :=
∑m

i=1 γiAi

▶ weak duality: f ∗ ≤ f (γ) for all γ ∈ Rm
+

▶ dual problem:
f ∗ = min

γ≥0
f (γ)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Lagrangian relaxation

SDP with a subset of m triangle inequalities ⟨Ai ,X ⟩ ≤ bi :

f ∗ := max ⟨C ,X ⟩
s. t. X ∈ E (⇔ diag(X) = e ,X ⪰ 0)

A(X) ≤ b

Dualizing A(X) ≤ b yields:

partial Lagrangian: L(X , γ) := ⟨C ,X ⟩+ γ⊤(b −A(X))

dual function: f (γ) := max
X∈E
L(X , γ) = b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

▶ adjoint operator: A⊤(γ) :=
∑m

i=1 γiAi

▶ weak duality: f ∗ ≤ f (γ) for all γ ∈ Rm
+

▶ dual problem:
f ∗ = min

γ≥0
f (γ)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Lagrangian relaxation

SDP with a subset of m triangle inequalities ⟨Ai ,X ⟩ ≤ bi :

f ∗ := max ⟨C ,X ⟩
s. t. X ∈ E (⇔ diag(X) = e ,X ⪰ 0)

A(X) ≤ b

Dualizing A(X) ≤ b yields:

partial Lagrangian: L(X , γ) := ⟨C ,X ⟩+ γ⊤(b −A(X))

dual function: f (γ) := max
X∈E
L(X , γ) = b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

▶ adjoint operator: A⊤(γ) :=
∑m

i=1 γiAi

▶ weak duality: f ∗ ≤ f (γ) for all γ ∈ Rm
+

▶ dual problem:
f ∗ = min

γ≥0
f (γ)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Lagrangian relaxation

SDP with a subset of m triangle inequalities ⟨Ai ,X ⟩ ≤ bi :

f ∗ := max ⟨C ,X ⟩
s. t. X ∈ E (⇔ diag(X) = e ,X ⪰ 0)

A(X) ≤ b

Dualizing A(X) ≤ b yields:

partial Lagrangian: L(X , γ) := ⟨C ,X ⟩+ γ⊤(b −A(X))

dual function: f (γ) := max
X∈E
L(X , γ) = b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

▶ adjoint operator: A⊤(γ) :=
∑m

i=1 γiAi

▶ weak duality: f ∗ ≤ f (γ) for all γ ∈ Rm
+

▶ dual problem:
f ∗ = min

γ≥0
f (γ)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Evaluating f

f (γ) = b⊤γ +max
X∈E
⟨C −A⊤(γ),X ⟩

▶ for C̃ = C −A⊤(γ), we have to solve

max ⟨C̃ ,X ⟩
s. t. X ∈ E (∗)

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize X = V⊤V ⪰ 0, V = (v1| . . . |vn) ∈ Rk×n, k ≤ n, and
solve

max ⟨C̃ ,V⊤V ⟩
s. t. V⊤V ∈ E . (SDP-vec)

▶ V⊤V ∈ E ⇔ ∥vi∥ = 1, i = 1, . . . , n

▶ (∗) ⇔ (SDP-vec) for k =
⌈√

2n
⌉

(Barvinok, 1995; Pataki, 1998)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Evaluating f

f (γ) = b⊤γ +max
X∈E
⟨C −A⊤(γ),X ⟩

▶ for C̃ = C −A⊤(γ), we have to solve

max ⟨C̃ ,X ⟩
s. t. X ∈ E (∗)

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize X = V⊤V ⪰ 0, V = (v1| . . . |vn) ∈ Rk×n, k ≤ n, and
solve

max ⟨C̃ ,V⊤V ⟩
s. t. V⊤V ∈ E . (SDP-vec)

▶ V⊤V ∈ E ⇔ ∥vi∥ = 1, i = 1, . . . , n

▶ (∗) ⇔ (SDP-vec) for k =
⌈√

2n
⌉

(Barvinok, 1995; Pataki, 1998)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Evaluating f

f (γ) = b⊤γ +max
X∈E
⟨C −A⊤(γ),X ⟩

▶ for C̃ = C −A⊤(γ), we have to solve

max ⟨C̃ ,X ⟩
s. t. X ∈ E (∗)

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize X = V⊤V ⪰ 0, V = (v1| . . . |vn) ∈ Rk×n, k ≤ n, and
solve

max ⟨C̃ ,V⊤V ⟩
s. t. V⊤V ∈ E . (SDP-vec)

▶ V⊤V ∈ E ⇔ ∥vi∥ = 1, i = 1, . . . , n

▶ (∗) ⇔ (SDP-vec) for k =
⌈√

2n
⌉

(Barvinok, 1995; Pataki, 1998)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Geometric interpretation

Optimization problem (SDP-vec)

max ⟨C̃ ,V⊤V ⟩ =
n∑

i ,j=1

C̃ijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

v1

v2

v3

v4

v5
v⊤i vj = ∥vi∥ · ∥vj∥ · cos∡(vi , vj)

= cos∡(vi , vj)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

max
n∑

i ,j=1

C̃ijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate ascent

We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j=1, j ̸=i C̃ijvj = V · C̃(i) − C̃iivi .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

max
n∑

i ,j=1

C̃ijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate ascent

We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j=1, j ̸=i C̃ijvj = V · C̃(i) − C̃iivi .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

max
n∑

i ,j=1

C̃ijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate ascent

We fix all but one column vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j=1, j ̸=i C̃ijvj = V · C̃(i) − C̃iivi .

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C̃ ∈ Rn×n with diag(C̃) = 0, k ∈ N≥1

Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)
for i ← 1 to n do

vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ←
V ·C̃(i)

∥V ·C̃(i)∥
;

Theorem: Local linear convergence (Wang et al., 2018)

Let k >
√
2n. If the iterates do not degenerate, then the Mixing Method

converges locally to the global optimum of (SDP-vec) at a linear rate.

▶ block-coordinate maximization (Erdogdu et al, 2021)

▶ momentum-based acceleration (Kim et al., 2021, preprint)

▶ bilinear decomposition, ADMM (Chen & Goulart, 2023, preprint)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C̃ ∈ Rn×n with diag(C̃) = 0, k ∈ N≥1

Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)
for i ← 1 to n do

vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ←
V ·C̃(i)

∥V ·C̃(i)∥
;

Theorem: Local linear convergence (Wang et al., 2018)

Let k >
√
2n. If the iterates do not degenerate, then the Mixing Method

converges locally to the global optimum of (SDP-vec) at a linear rate.

▶ block-coordinate maximization (Erdogdu et al, 2021)

▶ momentum-based acceleration (Kim et al., 2021, preprint)

▶ bilinear decomposition, ADMM (Chen & Goulart, 2023, preprint)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Low-rank methods

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C̃ ∈ Rn×n with diag(C̃) = 0, k ∈ N≥1

Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)
for i ← 1 to n do

vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ←
V ·C̃(i)

∥V ·C̃(i)∥
;

Theorem: Local linear convergence (Wang et al., 2018)

Let k >
√
2n. If the iterates do not degenerate, then the Mixing Method

converges locally to the global optimum of (SDP-vec) at a linear rate.

▶ block-coordinate maximization (Erdogdu et al, 2021)

▶ momentum-based acceleration (Kim et al., 2021, preprint)

▶ bilinear decomposition, ADMM (Chen & Goulart, 2023, preprint)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

When do we stop the mixing method?

Notation
▶ Vk : matrix V after iteration k

▶ fk = ⟨C̃ ,V⊤
k Vk⟩, function value after iteration k

▶ ∆k = fk − fk−1, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if ∥Vk−1−Vk∥F
1+∥Vk−1∥F < ε ≈ 0.01

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

▶ stop if ε = ∆k−1∆k

∆k−1−∆k
small ⇒ f ∗ ≈ fk + ε

▶ caveat: the actual optimum can be smaller or larger!

How do we bound f ∗ from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

When do we stop the mixing method?

Notation
▶ Vk : matrix V after iteration k

▶ fk = ⟨C̃ ,V⊤
k Vk⟩, function value after iteration k

▶ ∆k = fk − fk−1, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if ∥Vk−1−Vk∥F
1+∥Vk−1∥F < ε ≈ 0.01

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

▶ stop if ε = ∆k−1∆k

∆k−1−∆k
small ⇒ f ∗ ≈ fk + ε

▶ caveat: the actual optimum can be smaller or larger!

How do we bound f ∗ from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

When do we stop the mixing method?

Notation
▶ Vk : matrix V after iteration k

▶ fk = ⟨C̃ ,V⊤
k Vk⟩, function value after iteration k

▶ ∆k = fk − fk−1, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if ∥Vk−1−Vk∥F
1+∥Vk−1∥F < ε ≈ 0.01

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

▶ stop if ε = ∆k−1∆k

∆k−1−∆k
small ⇒ f ∗ ≈ fk + ε

▶ caveat: the actual optimum can be smaller or larger!

How do we bound f ∗ from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

When do we stop the mixing method?

Notation
▶ Vk : matrix V after iteration k

▶ fk = ⟨C̃ ,V⊤
k Vk⟩, function value after iteration k

▶ ∆k = fk − fk−1, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if ∥Vk−1−Vk∥F
1+∥Vk−1∥F < ε ≈ 0.01

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

▶ stop if ε = ∆k−1∆k

∆k−1−∆k
small ⇒ f ∗ ≈ fk + ε

▶ caveat: the actual optimum can be smaller or larger!

How do we bound f ∗ from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

When do we stop the mixing method?

Notation
▶ Vk : matrix V after iteration k

▶ fk = ⟨C̃ ,V⊤
k Vk⟩, function value after iteration k

▶ ∆k = fk − fk−1, objective improvement in iteration k

Stopping criterion: relative step tolerance

▶ stop if ∥Vk−1−Vk∥F
1+∥Vk−1∥F < ε ≈ 0.01

Stopping criterion: estimated gap (see MIXSAT solver, Wang & Kolter, 2019)

▶ stop if ε = ∆k−1∆k

∆k−1−∆k
small ⇒ f ∗ ≈ fk + ε

▶ caveat: the actual optimum can be smaller or larger!

How do we bound f ∗ from above (dualbound)?

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Upper bounds via weak duality

Primal-dual pair

max ⟨C̃ ,X ⟩
s. t. diag(X) = e

X ⪰ 0

(SDP)

min e⊤y

s. t. Diag(y)− C̃ ⪰ 0
y ∈ Rn

(DSDP)

Proposition (see Wang et al., 2018)

Let V ∗ = lim
k→∞

Vk . Then yi = ∥V ∗ · C̃(i)∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :

▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · C̃(i)∥2
▶ feasible dual variables: y = ỹ − λmin

(
Diag(ỹ)− C̃

)
e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper bounds via weak duality

Primal-dual pair

max ⟨C̃ ,X ⟩
s. t. diag(X) = e

X ⪰ 0

(SDP)

min e⊤y

s. t. Diag(y)− C̃ ⪰ 0
y ∈ Rn

(DSDP)

Proposition (see Wang et al., 2018)

Let V ∗ = lim
k→∞

Vk . Then yi = ∥V ∗ · C̃(i)∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :

▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · C̃(i)∥2
▶ feasible dual variables: y = ỹ − λmin

(
Diag(ỹ)− C̃

)
e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper bounds via weak duality

Primal-dual pair

max ⟨C̃ ,X ⟩
s. t. diag(X) = e

X ⪰ 0

(SDP)

min e⊤y

s. t. Diag(y)− C̃ ⪰ 0
y ∈ Rn

(DSDP)

Proposition (see Wang et al., 2018)

Let V ∗ = lim
k→∞

Vk . Then yi = ∥V ∗ · C̃(i)∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :

▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · C̃(i)∥2

▶ feasible dual variables: y = ỹ − λmin

(
Diag(ỹ)− C̃

)
e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Upper bounds via weak duality

Primal-dual pair

max ⟨C̃ ,X ⟩
s. t. diag(X) = e

X ⪰ 0

(SDP)

min e⊤y

s. t. Diag(y)− C̃ ⪰ 0
y ∈ Rn

(DSDP)

Proposition (see Wang et al., 2018)

Let V ∗ = lim
k→∞

Vk . Then yi = ∥V ∗ · C̃(i)∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :

▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · C̃(i)∥2
▶ feasible dual variables: y = ỹ − λmin

(
Diag(ỹ)− C̃

)
e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Approximately solving the dual problem

min
γ≥0

f (γ) = min
γ≥0

{
b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

}
▶ f is nonsmooth

▶ evaluation of f at γ ∈ Rm
+ yields

▶ function value f (γ)
▶ subgradient g = b −A(X ∗) of f at γ

▶ dynamic bundle approach for SDPs by Gruber & Rendl, 2003

▶ implementation similar to BiqMac and BiqBin

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Approximately solving the dual problem

min
γ≥0

f (γ) = min
γ≥0

{
b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

}
▶ f is nonsmooth
▶ evaluation of f at γ ∈ Rm

+ yields
▶ function value f (γ)
▶ subgradient g = b −A(X ∗) of f at γ

▶ dynamic bundle approach for SDPs by Gruber & Rendl, 2003

▶ implementation similar to BiqMac and BiqBin

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Approximately solving the dual problem

min
γ≥0

f (γ) = min
γ≥0

{
b⊤γ +max

X∈E
⟨C −A⊤(γ),X ⟩

}
▶ f is nonsmooth
▶ evaluation of f at γ ∈ Rm

+ yields
▶ function value f (γ)
▶ subgradient g = b −A(X ∗) of f at γ

▶ dynamic bundle approach for SDPs by Gruber & Rendl, 2003

▶ implementation similar to BiqMac and BiqBin

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Solver features

Speed:

▶ fast approximate function and subgradient evaluation

▶ usually a single eigenvalue computation per B&B node

▶ tradeoff between number of B&B nodes and overall time spent

Branching:

▶ decision based on dual information

▶ active cutting planes are passed down in B&B tree

Primal heuristic:
▶ Goemans-Williamson hyperplane rounding

▶ one-opt and two-opt local search
▶ ‘biased’ hyperplanes

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Solver features

Speed:

▶ fast approximate function and subgradient evaluation

▶ usually a single eigenvalue computation per B&B node

▶ tradeoff between number of B&B nodes and overall time spent

Branching:

▶ decision based on dual information

▶ active cutting planes are passed down in B&B tree

Primal heuristic:
▶ Goemans-Williamson hyperplane rounding

▶ one-opt and two-opt local search
▶ ‘biased’ hyperplanes

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Solver features

Speed:

▶ fast approximate function and subgradient evaluation

▶ usually a single eigenvalue computation per B&B node

▶ tradeoff between number of B&B nodes and overall time spent

Branching:

▶ decision based on dual information

▶ active cutting planes are passed down in B&B tree

Primal heuristic:
▶ Goemans-Williamson hyperplane rounding

▶ one-opt and two-opt local search
▶ ‘biased’ hyperplanes

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Goemans-Williamson hyperplane rounding

▶ choose random hyperplane h ∈ Sk−1 and set xi = sign(h⊤vi)

v1

v2

v3

v4

v5

▶ local search to improve solution (one-opt and two-opt)

▶ good candidates are close to hyperplane, i.e., |h⊤vi | small

▶ construct a ‘biased hyperplane’ h∗ ∈ argmax∥h∥=1∥V⊤h∥2

▶ h∗ is eigenvector to largest eigenvalue of VV⊤

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Computational results

▶ Erdős–Rényi graphs with n = 100 and edge probability 1
2

(unweighted)

BiqMac MADAM our solver
instance

time nodes time nodes time nodes
g05 100.0 555.16 531 98.33 195 17.19 751
g05 100.1 3547.17 3643 494.10 705 84.78 3888
g05 100.2 115.87 127 40.07 43 5.31 305
g05 100.3 1308.85 1215 129.60 497 29.48 1292
g05 100.4 71.03 69 9.71 11 2.68 99
g05 100.5 116.16 129 28.63 31 5.31 203
g05 100.6 177.22 193 29.52 47 6.52 253
g05 100.7 332.35 337 75.31 73 11.74 495
g05 100.8 291.28 275 35.78 67 8.50 367
g05 100.9 321.10 277 47.34 101 9.57 403

Table: CPU times (s) and B&B nodes for ‘g05’ instances.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17

Conclusion and future work

Conclusion:

▶ significant speedup of ‘traditional’ approaches by recent
low-rank methods

▶ improvements by
▶ branching decision based on dual information
▶ passing cuts down

Future work:

▶ include more cuts

▶ use parallelization

▶ apply to quadratically constrained problems

Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Conclusion and future work

Conclusion:

▶ significant speedup of ‘traditional’ approaches by recent
low-rank methods

▶ improvements by
▶ branching decision based on dual information
▶ passing cuts down

Future work:

▶ include more cuts

▶ use parallelization

▶ apply to quadratically constrained problems

Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Conclusion and future work

Conclusion:

▶ significant speedup of ‘traditional’ approaches by recent
low-rank methods

▶ improvements by
▶ branching decision based on dual information
▶ passing cuts down

Future work:

▶ include more cuts

▶ use parallelization

▶ apply to quadratically constrained problems

Thank you!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

