
Solution Approaches for the
Single Row Facility Layout Problem
based on Semidefinite Programming

Masterarbeit
von

Jan Schwiddessen

angefertigt am

Lehrstuhl Management Science
Fakultät Wirtschaftswissenschaften
Technische Universität Dortmund

unter Anleitung von

JProf. Dr. Anja Fischer

Dortmund, Mai 2020

Abstract

The single row facility layout problem (SRFLP) is the stronglyNP-hard optimization problem
of arranging n facilities of given lengths on a straight line, while minimizing a weighted sum
of distances between all facility pairs. In this thesis, we review different lower bounding tech-
niques for SRFLP and demonstrate that, despite their practical challenges, strong semidefinite
relaxations are among the most promising solution approaches. To this end, we propose a
new semidefinite approach for SRFLP and tighten the existing semidefinite relaxations for the
first time with pentagonal and other inequalities. Additionally, we make use of an algorith-
mic method that has never been applied to semidefinite relaxations of SRFLP before. Using
our novel approach, we significantly reduce the best known duality gaps for all benchmark
instances from the literature with up to 100 facilities, and report optimal solutions for almost
all instances with up to 81 facilities. Moreover, our approach turns out to be much faster
than any other exact approach for SRFLP. Finally, we address a branch-and-bound approach
which uses our semidefinite bounds and provide some useful tools such as primal heuristics
and branching rules.

i

Notation

R space of real numbers
R+ space of nonnegative real numbers
Rn space of real n-dimensional column vectors
Rn

+ space of nonnegative real n-dimensional column vectors
Sn space of n× n symmetric matrices
S+
n space of n× n positive semidefinite matrices
S−n space of n× n negative semidefinite matrices
A � 0 matrix A is (symmetric) positive semidefinite
A � 0 matrix A is (symmetric) positive definite
A � 0 matrix A is (symmetric) negative semidefinite
min minimum, minimize
max maximum, maximize
inf infimum
sup supremum
e vector of all ones of appropriate dimension
tr (A) trace of A ∈ Sn
〈A,B〉 inner product in Sn, 〈A,B〉 = tr (BA)

A (X) = [〈A1, X〉 , . . . , 〈Am, X〉]> for given Ai ∈ Sn
A> (y) =

∑m
i=1 yiAi

rank (A) rank of A
diag (A) diag (A) = [a11, . . . , ann]>

conv (·) convex hull operator
[n] = {1, . . . , n}
Πn set of permutations of [n]
E elliptope
M metric polytope
PC cut polytope
PLOP linear ordering polytope
PBTW betweenness polytope
PQO quadratic ordering polytope
PLQO linear-quadratic ordering polytope
SRFLP single row facility layout problem

iii

Contents

Introduction 1

1 Preliminaries 5

1.1 Semidefinite matrices . 5

1.2 Semidefinite programming . 6

1.3 Lagrangian relaxation . 8

2 Linear Programming based Approaches for SRFLP 11

2.1 Intuitive mixed 0-1 LP formulations . 11

2.2 The distance polytope for SRFLP . 13

2.3 Betweenness-based approach . 14

2.4 Discussion on LP-based approaches for SRFLP 16

3 Semidefinite Relaxations for SRFLP 19

3.1 A bivalent quadratic formulation . 19

3.2 Semidefinite relaxations . 25

3.3 Performance of interior-point methods for SRFLP 30

4 Practical Solution Methods based on Lagrangian Relaxation 33

4.1 A bundle method approach . 34

4.2 A regularized approach . 35

4.3 Comparison of the methods . 41

5 A Novel Approach for SRFLP 45

5.1 A considerably improved relaxation . 45

5.2 Primal heuristics . 51

5.3 Outline of the implementation . 56

5.4 Towards a branch-and-bound approach . 59

v

vi CONTENTS

6 Computational Results 65

7 Conclusions and Future Research 79

Bibliography 81

Introduction

Semidefinite programming is a relatively new branch of convex optimization and has been
studied extensively in the last decades. One of its major areas of application is combina-
torial optimization, where it is used to approximate NP-hard optimization problems by
semidefinite relaxations. These relaxations can often be strengthened in a canonical way by
adding some kind of generic inequalities. The obtained bounds are typically much stronger
than those of linear programming techniques when applied to problems that have some
kind of quadratic characteristic. Especially for problems that are hard to handle with stan-
dard linear programming based approaches, semidefinite relaxations play to their strengths.
Although all well-posed semidefinite programs have nice theoretical properties and can be
solved with arbitrary precision within polynomial time, their practical solution can impose
major challenges for interesting problem sizes and is still a very active research area. In order
to efficiently apply semidefinite relaxations to large-scale problems, special customized ap-
proaches have to be designed. A particular class of combinatorial optimization problems for
which semidefinite relaxations are known to be among the best approaches, are the so-called
ordering problems (see e.g. [41,44]). One specific problem among this class is the single row
facility layout problem (SRFLP).

Problem statement. Suppose that we are given n one-dimensional facilities with positive
integer lengths `i, 1 ≤ i ≤ n, and integer weights cij, 1 ≤ i < j ≤ n, between all pairs of
facilities. The single row facility layout problem asks to arrange the n facilities on a straight
line in a non-overlapping way such that the total weighted sum of distances between all
pairs of facilities is minimized. Here, the distance dij of two facilities i and j is measured
with respect to their respective centroids. Due to the nonnegative lengths and weights, it is
sufficient to only consider layouts without gaps between adjacent facilities. Hence, a feasible
layout or ordering of the facilities can be represented by an element π ∈ Πn, where Πn

denotes the set of all permutations of [n] := {1, . . . , n}. With this notation, SRFLP can be
formulated as

min
π∈Πn

∑
i,j∈[n]
i<j

cijd
π
ij,

where dπij denotes the center-to-center distance of i and j with respect to the given layout π.
For example, let n = 3 with (`1, `2, `3) = (3, 5, 6) and (c12, c13, c23) = (4, 8, 9) be given. An
optimal ordering for this particular instance is π∗ = (1, 3, 2) which is illustrated in Figure 1.
We have dπ∗

12 = 10, dπ∗
13 = 4.5, dπ∗

23 = 5.5, and thus, the optimal value is 4 ·10+8 ·4.5+9 ·5.5 =
125.5. Obviously, SRFLP admits a certain kind of symmetry in the sense that each feasible

1

2 Introduction

dπ
∗

13 = 4.5

dπ
∗

12 = 10

dπ
∗

23 = 5.5

1 3 2

Figure 1: Optimal ordering of a SRFLP instance with n = 3, (`1, `2, `3) = (3, 5, 6) and
(c12, c13, c23) = (4, 8, 9). The optimal value is 4 · 10 + 8 · 4.5 + 9 · 5.5 = 125.5.

vector of distances corresponds to two different permutations which yield the same objective
value.

Applications and related problems. The single row facility layout problem, also known
as the one-dimensional space allocation problem, was first considered by Simmons [78] in
1969. Since then, many practical situations that can be modeled by SRFLP have been iden-
tified in the literature. These include the arrangement of rooms on one side of a corridor
in hospitals, supermarkets or office buildings [78], the assignment of disk cylinders to files
and the optimal storage of equipment such as books on shelves [71]. Further applications
include the assignment of airplanes to gates at an airport terminal [81] and the ordering of
machines in flexible manufacturing systems, where automated guided vehicles travel between
manufacturing cells on a straight line [37]. A common feature of these applications is that
some objects, of possibly different dimensions, have to be arranged such that the (expected)
total cost of communication between them is minimized. For this reason, the weights cij
are often also called ‘transportation costs’, ‘average daily traffic’, ‘transmission intensities’,
‘traffic intensities’, ‘communication costs’ or ‘connectivities’.
The SRFLP is also closely related to many other interesting combinatorial problems. First,
it belongs to the general class of facility layout problems (FLPs), more precisely to the row
facility layout problems which also include some extensions of SRFLP such as the double
row facility layout problem (see e.g. [11]). Nonetheless, the SRFLP is by far the most studied
of these variants. Moreover, if all facilities have unit length, we obtain the so-called single
row equidistant facility layout problem (SREFLP) which is a special case of the notorious
quadratic assignment problem (see [42]). Furthermore, if additionally all weights cij have
values in {0, 1}, SRFLP reduces to the well-known minimum linear arrangement problem (see
e.g. [32]) which is already NP-hard in the strong sense [24]. Hence, SRFLP and SREFLP are
also stronglyNP-hard. On the other hand, a generalization of SRFLP is given by the weighted
betweenness problem, which itself is again a special case of the quadratic ordering problem
(see [41]). As a result, investigating SRFLP can also yield valuable algorithmic approaches
for some of the numerous related problems. Due to its computational complexity, plenty of
heuristic approaches for SRFLP were proposed, especially in recent years (see e.g. [2,13,20,22,
30, 46–49, 53, 54, 67, 69, 70, 74, 75, 80]). Certainly, these approaches do not provide any lower
bounds for the optimal value of SRFLP.

Introduction 3

Existing lower bounding techniques. Exact proposed approaches for SRFLP include
a combinatorial branch-and-bound algorithm by Simmons [78, 79], dynamic programming
approaches by Karp & Held [45] and Picard & Queyranne [71] and a nonlinear model by
Heragu & Kusiak [38]. However, it turned out that appropriate approaches based on linear
programming techniques and semidefinite relaxations are much more efficient in practice.
Several mixed integer formulations for SRFLP were proposed by Love &Wong [60] and Amaral
[1,3]. However, due to weak linear relaxations only instances with n ≤ 18 could be solved with
these approaches within several hours. The first polyhedral study of the so-called distance
polytope for SRFLP by Amaral & Letchford [5] led to a considerable improvement on the
lower bounds, and instances with up to 30 facilities were then solved. The current best
approach for SRFLP based on linear programming was proposed by Amaral [4]. Using binary
betweenness variables within a sole cutting plane algorithm, instances with up to n = 35
were solved.
Matrix-based relaxations have proven to be another promising way to obtain strong lower
bounds for SRFLP. The first semidefinite relaxation for SRFLP was proposed by Anjos et
al. [6], providing the first non-trivial lower bounds for instances with up to 80 facilities. A
slightly weaker semidefinite relaxation was proposed by Anjos & Yen [12], which could be
solved much faster and produced lower bounds for n = 100 which are provably only a few
percentage points away from the optimum. However, the obtained lower bounds of these
basic relaxations were too weak to solve any instance of considerable size. Therefore, Anjos
& Vanelli [8, 10] improved the relaxations by adding the so-called triangle inequalities in a
cutting plane approach. At that time, they solved many prior unsolved instances with n ≤ 30
to optimality within dozens of hours of computing time. The current leading approach for
SRFLP was proposed by Hungerländer and Rendl [44] and is based on a semidefinite relaxation
that is particularly designed for quadratic ordering problems. Their approach involves an
appropriate combination of optimization methods and handles the majority of constraints
in a Lagrangian fashion. Hungerländer and Rendl [43, 44] solved instances with up to 42
facilities and greatly improved the best known optimality gaps for all unsolved instances
with n ≤ 100. Their approach is also much faster than any other exact approach for n ≥ 20.

Research aims. On the one hand, there was seemingly no improvement on exact ap-
proaches for SRFLP in the last few years, and the best known optimality gaps for some
well-known instances in the literature are still barely smaller than 2%. On the other hand,
plenty of heuristic approaches were proposed, proving that the interest in SRFLP is still very
high. The main goal of this thesis is to level up the existing semidefinite approaches for SRFLP
and to solve considerably larger instances to global optimality while also significantly reduc-
ing the best known duality gaps for very large instances. A secondary goal is to show that
strong semidefinite relaxations are the most promising way to tackle large SRFLP instances.
However, they require further problem-dependent knowledge and well-suited algorithmic ap-
proaches.
In order to achieve these goals, we first review many existing lower bounding techniques
for SRFLP, including linear and semidefinite approaches, and discuss their strengths and
limitations. We then develop a novel semidefinite approach for SRFLP which involves a the-
oretically stronger relaxation and a solution method that was not applied to SRFLP before.

4 Introduction

We strengthen the existing semidefinite relaxations by adding a well-suited subclass of the
so-called pentagonal inequalities and also consider more generic inequalities for which we
propose heuristic separation routines. We also propose primal heuristics that extract fea-
sible layouts from approximate solutions of our semidefinite relaxations. The core of our
novel approach for SRFLP is that we use the nonstandard semidefinite bounds introduced
in [62] which heavily rely on Lagrangian duality. They are weaker than the usual semidef-
inite bounds, but their tightness can be controlled by a real parameter. Moreover, these
bounds can be optimized via a quasi-Newton method, while their evaluation only requires
a partial eigendecomposition of a matrix of order O(n2). In order to obtain strong lower
bounds for SRFLP, we use the algorithmic framework presented in [52] as a template and
develop a bounding procedure particularly tailored for SRFLP. We also discuss the usage of
our new bounds in a branch-and-bound algorithm.

Contribution. We improve the existing semidefinite relaxations for SRFLP and provide
the first computational results concerning pentagonal and other inequalities. We also use a
solution approach for these relaxations that has never been applied to SRFLP before. Our pro-
posed approach greatly outperforms all existing exact approaches. We solve many instances
with up to 81 facilities to global optimality for the first time. In fact, only a few benchmark
instances from the literature with n ≤ 100 remain unsolved. For all unsolved instances we
significantly reduce the best known duality gaps, leading to nearly optimal lower bounds,
even for n = 100. Additionally, our approach turns out to be much faster than any other
approach in the literature for n ≥ 20. It also computes the lower bounds of the current
leading approach by Hungerländer & Rendl [44] in much less time and finds better feasible
solutions. Finally, we present some important tools such as primal heuristics and branching
rules, which possibly could be used within a branch-and-bound algorithm to solve even larger
instances.

Structure. This thesis is divided into seven chapters: Chapter 1 briefly assembles some
important aspects of semidefinite matrices, semidefinite programming and Lagrangian relax-
ation. In Chapter 2, we review various approaches based on linear programming for SRFLP
and discuss their practical limitations. In Chapter 3, we present a bivalent quadratic formu-
lation for SRFLP and deduce the already existing semidefinite relaxations. We also comment
on the performance of direct solution methods for these relaxations. Chapter 4 is concerned
with more suitable practical methods that use Lagrangian duality and can deal with large-
scale problems. We present the current leading approach by Hungerländer & Rendl [44],
as well as the motivation of our proposed approach. In Chapter 5, we present our novel
approach in more detail. First, we propose a new stronger semidefinite relaxation together
with some heuristic separation routines for certain classes of inequalities. We then present
primal heuristics and provide an overview of our practical implementation. The chapter is
concluded with a discussion on a branch-and-bound approach that makes use of our pro-
posed semidefinite bounds. In Chapter 6, we provide extensive computational results on our
approach and compare it to other exact approaches. Finally, some conclusions and possible
directions of future work are given in Chapter 7.

Chapter 1

Preliminaries

In this chapter, we briefly introduce some important mathematical concepts that are used
throughout this thesis.

1.1 Semidefinite matrices

In this thesis, all considered matrices are assumed to be symmetric. A matrix A ∈ Rn×n is
symmetric if A = A> and the vector space of n × n real symmetric matrices is denoted by
Sn. The natural inner product between two elements A = (aij) , B = (bij) ∈ Sn is given by

〈A,B〉 :=
n∑
i=1

n∑
j=1

aijbij = tr (BA) .

The associated norm
‖A‖F :=

√
〈A,A〉

is the so-called Frobenius norm.

Definition 1.1.1
A matrix A ∈ Sn is positive semidefinite (A ∈ S+

n , A � 0) if

x>Ax ≥ 0 ∀x ∈ Rn,

and negative semidefinite (A ∈ S−n , A � 0) if

x>Ax ≤ 0 ∀x ∈ Rn.

Moreover, A ∈ Sn is positive definite (A � 0) if

x>Ax > 0 ∀x ∈ Rn \ {0}.

It is well-known that S+
n is a full-dimensional, closed, pointed, self-dual, convex cone in R(n+1

2)

(see e.g. [33]). The projections (with respect to the Frobenius norm) of a matrix A ∈ Sn onto
S+
n and its polar cone S−n are given by

A+ := argmin
X�0

‖X − A‖F and A− := argmin
X�0

‖X − A‖F .

5

6 Preliminaries

Due to Moreau’s theorem (see [40]), these projections are characterized by

〈A+, A−〉 = 0 and A = A+ + A−. (1.1)

Moreover, an explicit formula for these projections is known (see e.g. [39]). For this, let
A =

∑
i λiviv

>
i be a spectral decomposition of A with eigenvalues λi and corresponding

eigenvectors vi which are assumed to be pairwise orthogonal and of unit length (see [62]).
Then

A+ =
∑
λi>0

λiviv
>
i and A− =

∑
λi<0

λiviv
>
i . (1.2)

Combining (1.1) and (1.2) yields
(−A)− = −A+ (1.3)

for any A ∈ Sn.

1.2 Semidefinite programming

Semidefinite programming (SDP) is an extension of linear programming (LP), where a linear
function is optimized over the cone of semidefinite matrices subject to linear constraints, i.e.,
the vector variable x ∈ Rn

+ is replaced by a matrix variable X ∈ S+
n . Moreover, SDP includes

LP as a special case, namely when the matrix variable X is restricted to be diagonal (see
e.g. [33]).
Let C and A1, . . . , Am be matrices in Sn and b ∈ Rm. A (primal) semidefinite program in
standard notation can then be written as the optimization problem

(PSDP)
min 〈C,X〉
s.t. A(X) = b

X ∈ S+
n ,

where A : Sn → Rm is a linear operator of the form

A(X) =

 〈A1, X〉
...

〈Am, X〉

 . (1.4)

Since the semidefinite cone S+
n is not polyhedral and has a nonlinear boundary, (PSDP) is

a convex nonlinear optimization problem.

1.2.1 Duality theory

The duality theory in semidefinite programming requires more care than in linear program-
ming, since strong duality does not hold in general. Nonetheless, strong duality is guaranteed
to hold if a Slater constraint qualification is satisfied. In this case, semidefinite programs can
theoretically and practically be solved by interior-point methods (IPMs) to any desired pre-
cision in polynomial time (see e.g. [33]).

Preliminaries 7

The Lagrangian dual problem of (PSDP) is given by

(DSDP)

max 〈b, y〉
s.t. A>(y) + Z = C

Z ∈ S+
n

y ∈ Rm,

where A> : Rm → Sn with

A>(y) =
m∑
i=1

yiAi

is the adjoint operator to (1.4). Despite its appearance, (DSDP) is again a semidefinite
program (see e.g. [33]). As usual, weak duality holds for semidefinite programming, i.e.,

〈b, y〉 ≤ 〈C,X〉

for any triple (X, y, Z) that is feasible for the primal-dual pair consisting of (PSDP) and
(DSDP). To state the strong duality theorem, we say that (PSDP) is strictly feasible if it
admits a feasible point X that satisfies X � 0. Analogously, we say that (DSDP) is strictly
feasible if it admits a feasible pair (y, Z) that satisfies Z � 0.

Theorem 1.2.1 (Strong duality, see e.g. [41])
Let a primal-dual pair of (PSDP) and (DSDP) be given and let

p∗ = inf {〈C,X〉 : A(X) = b, X � 0} and
d∗ = sup

{
〈b, y〉 : A>(y) + Z = C, Z � 0

}
.

Assume that d∗ <∞ (respectively p∗ > −∞) and assume that (DSDP) (respectively (PSDP))
is strictly feasible. Then p∗ = d∗ and this value is attained for (PSDP) (respectively (DSDP)).

1.2.2 Applications in combinatorial optimization

A famous application of semidefinite programming is the max-cut problem. With a suitable
choice of the matrix C ∈ Sn, the max-cut problem can be formulated as (see e.g. [33])

max 〈C,X〉
s.t. X ∈ PC ,

where PC denotes the cut polytope

PC := conv
{
xx> : x ∈ {−1, 1}n

}
.

It is well-known (see [55]) that PC is contained in the so-called elliptope

E :=
{
X ∈ Rn×n : X � 0, Xii = 1, i = 1, . . . , n

}
.

Hence, an upper bound for the max-cut problem is obtained by solving the semidefinite
program

max 〈C,X〉
s.t. X ∈ E .

8 Preliminaries

Analogously, SDP relaxations can be derived in a canonical way for any optimization problem
that can be formulated over PC with additional linear constraints in the matrix variable X.
That is, a semidefinite relaxation of

max 〈C,X〉
s.t. A(X) ≤ a

B(X) = b
X ∈ PC

is given by
max 〈C,X〉
s.t. A(X) ≤ a

B(X) = b
X ∈ E .

1.3 Lagrangian relaxation

Beyond the scope of convex optimization, Lagrangian duality is an essential methodology in
combinatorial optimization. The universal technique of Lagrangian relaxation can be used
to create dual bounds for the optimal value of any optimization problem. In practice, opti-
mization problems are often difficult to solve directly if they involve a complex structure of
the feasible set or simply have too many constraints. This also concerns convex optimization
problems such as semidefinite programs which theoretically can be solved by interior-point
methods in polynomial time. However, the cost to do so may be very high for large-scale
problems. For the following short description of Lagrangian relaxation, we refer to [25,57].
To illustrate the idea of Lagrangian relaxation, we consider the rather general optimization
problem

min f (x)
s.t. a(x) ≤ 0

b(x) = 0
x ∈ X ,

(1.5)

where X ⊆ Rn, f : Rn → R, a : Rn → Rm and b : Rn → Rp. We assume that f can compar-
atively easy be minimized over X , but that all additional equality or inequality constraints
make problem (1.5) much harder to solve. The Lagrangian relaxation dualizes these compli-
cating constraints and lifts them into the objective function. For this purpose, we introduce
the so-called Lagrangian

L (x;λ, µ) := f(x) +
m∑
i=1

λiai(x) +

p∑
j=1

µjbj(x) = f(x) + λ>a(x) + µ>b(x),

which is a function of the primal variable x ∈ X and of the dual variables λ ∈ Rm
+ , µ ∈ Rp.

Moreover, for given dual variables λ and µ, we define the dual function

θ(λ, µ) := inf
x∈X
L(x;λ, µ).

Preliminaries 9

It is now easy to see that weak duality holds, i.e., we have

θ(λ, µ) ≤ f(x) for all x feasible in (1.5) and all λ ∈ Rm
+ , µ ∈ Rp.

Hence, each feasible pair of dual variables (λ, µ) yields a lower bound θ(λ, µ) for the optimal
value of problem (1.5). To find the best possible such lower bound, we have to solve the
so-called dual problem

sup θ(λ, µ)
s.t. λ ∈ Rm

+

µ ∈ Rp.
(1.6)

It is well-known that the domain

dom (θ) :=
{

(λ, µ) ∈ Rm
+ × Rp : θ (λ, µ) > −∞

}
is a convex set and that the function θ : dom (θ) → R is concave (see e.g. [25]). However,
the dual function θ is often not differentiable on dom (θ), and thus, methods of nonsmooth
convex optimization have to be used to optimize the dual problem (1.6) in this case.

Chapter 2

Linear Programming based Approaches
for SRFLP

Linear programming (LP) is one of the most essential and powerful tools in mathematical
optimization. Therefore, many LP-based approaches were suggested to tackle SRFLP in the
last decades (see e.g. [1, 3–5, 38, 60]). All of these approaches provide lower bounds for the
optimal value of SRFLP. Hence, they can be used to estimate the quality of any ordering
that is obtained by a heuristic, or even to prove the global optimality of such an ordering. In
contrast, the combinatorial branch-and-bound algorithm proposed in [78] and the dynamic
programming approach suggested in [71] do not yield lower bounds until they terminate and
output an optimal solution.
In the next sections, we present three specific approaches that outline the main ideas and
research directions to tackle SRFLP with linear programming techniques. Especially the ap-
proach presented in [4], which uses so-called betweennness variables, is of great importance
for the later introduced semidefinite relaxations in Chapter 3 and their further enhancement
in Chapter 5. We close this chapter by discussing the practical usefulness of the presented
LP-based approaches and by pointing out their strengths and limitations.

2.1 Intuitive mixed 0-1 LP formulations

An intuitive mixed 0-1 LP formulation for SRFLP was proposed by Love & Wong [60] and
then later by Heragu & Kusiak [38] in a different setting. The model, they came up with,
used O(n2) binary variables, O(n2) continuous variables and O(n2) constraints.

Their model involved binary variables u = (uij) ∈ {0, 1}n(n−1), i 6= j, with the meaning

uij =

{
1, if facility i lies to the left of facility j
0, otherwise.

(2.1)

In order to link the binary variables (2.1) with each other, they also used position variables
pi for all i ∈ [n]. To express the objective function, additional distance variables dij for all
pairs i, j ∈ [n], i < j, were required.

11

12 Linear Programming based Approaches for SRFLP

Let M :=
∑

i∈[n] `i, then the formulation of Love & Wong [60] is similar to

min
∑
i,j∈[n]
i<j

cijdij (2.2)

s.t. uij + uji = 1, i, j ∈ [n], i < j, (2.3)
dij ≥ pi − pj, i, j ∈ [n], i < j, (2.4)
dij ≥ pj − pi, i, j ∈ [n], i < j, (2.5)
pi + (`i + `j)/2 ≤ pj +M(1− uij), i, j ∈ [n], i 6= j, (2.6)
`i/2 ≤ pi ≤M − `i/2, i ∈ [n], (2.7)
dij ≥ 0, i, j ∈ [n], i < j, (2.8)
ui,j ∈ {0, 1}, i, j ∈ [n], i 6= j. (2.9)

Equations (2.3) ensure that the relative positioning of two facilities i and j is well-defined,
i.e., either i lies to the left of j or vice versa. These equations could also be used to eliminate
half of the variables. They are linked with the position variables pi by inequalities (2.6)
that ensure a non-overlapping ordering of all facilities. Given concrete values of the binary
variables and the position variables, a lower bound for the distance dij between two facilities
i and j is computed with the help of (2.4) and (2.5). Since we are minimizing in (2.2), there
is always an optimal solution for which dij = |pi − pj| for all i, j ∈ [n], i < j, holds. The
remaining constraints (2.7), (2.8) and (2.9) correspond to bound constraints or integrality
conditions.
Sadly, the above model has a very weak linear relaxation. To see this, let dij = 0 for all
i, j ∈ [n], i < j, pi = max {`j : j ∈ [n]} for all i ∈ [n] and uij = 1

2
for all i, j ∈ [n], i 6= j. All

constraints are then satisfied and the resulting lower bound is 0. This is why only instances
with n ≤ 11 were solved using this approach.
The variables (2.1) are often called linear ordering variables and the convex hull of all their
incidence vectors forms the so-called linear ordering polytope PLOP (see e.g. [29]). Since the
linear ordering problem (LOP) is a special case of SRFLP (see [58]) and can be formulated
over PLOP , it is a promising idea to exploit the knowledge of PLOP . To this end, Amaral [1]
showed that SRFLP can be formulated over a projection of PLOP . Using the basic relaxation

B := {u ∈ Rn(n−1) : uij + uji = 1, i, j ∈ [n], i < j,

uij + ujk + uki ≤ 2, i, j, k ∈ [n], |{i, j, k}| = 3,

uij ≥ 0, i, j ∈ [n], i 6= j}

of PLOP (see [29]), he extended the model of Love & Wong [60] by adding more inequalities.
The resulting model had O(n3) constraints and its linear relaxation yielded an improved
lower bound of

1

2

∑
i,j∈[n]
i<j

cij (`i + `j) ,

see [5]. Instances with up to n = 15 were then solved within an hour.

Linear Programming based Approaches for SRFLP 13

Another extension suggested by Amaral [3] uses quadratic expressions of the linear order-
ing variables uij to replace the distance variables dij in the objective function. Amaral [3]
presented a linearization for this idea involving O(n3) binary variables, O(n3) continuous
variables and O(n3) constraints. The associated lower bounds are of a more sophisticated
type (see [5]) and instances with n ≤ 18 could be solved within a few hours.

2.2 The distance polytope for SRFLP

An in depth study on the polyhedral properties of SRFLP was done by Amaral & Letchford
[5]. Since only the distances dij between all pairs of facilities are required to calculate the
objective value of a valid ordering, they directly represented a permutation π ∈ Πn by its
implicitly given distance vector dπij. For given n ≥ 2 and positive integer lengths ` ∈ Zn≥1,
they defined the distance polytope P(n, `) as the convex hull of all valid distance vectors d,
i.e.,

P(n, `) := conv
{
d ∈ R(n2)

+ : ∃π ∈ Πn with dij = dπij ∀i, j ∈ [n], i < j

}
.

Due to symmetry, P(n, `) has n!/2 vertices. These vertices are not necessarily integral, since
the distance between two facilities is measured with respect to their centroids. Nonetheless,
an integral polytope can easily be obtained by a translation [5].
Amaral & Letchford [5] showed that P(n, `) has dimension

(
n
2

)
− 1, i.e., it is not full-

dimensional. Its affine hull is described by the equation

∑
i,j∈[n]
i<j

`i`jdij =
1

6

∑
i∈[n]

`i

3

−
∑
i∈[n]

`i
3

 . (2.10)

An exponential class of valid and facet defining inequalities for P(n, `) can immediately be
derived from equation (2.10), which they called ‘clique’ inequalities. Moreover, they proved
that P(n, `) is contained in the well-known cut cone CCn (see e.g. [21]). As a result, all
known valid inequalities for CCn are also valid for P(n, `). Amaral & Letchford [5] used
many of these inequalities as cutting planes in a branch-and-cut algorithm. More precisely,
they considered the so-called hypermetric inequalities which include the triangle inequalities

dij − dik − djk ≤ 0, i, j, k ∈ [n], |{i, j, k}| = 3, i < j,

as a special case, the pure negative-type inequalities and the rounded positive semidefinite
inequalities. Amaral & Letchford [5] presented detailed conditions under which certain classes
of inequalities induce facets of P(n, `) and how they can be separated heuristically. Their
starting relaxation only included the trivial lower bounds dij ≥ (`i + `j)/2 and the implicit
equation (2.10). While feasibility could be achieved by adding binary variables to the model,
Amaral & Letchford [5] presented a specific branching rule to avoid this. This branching rule
amounts to enforcing certain triangle inequalities to hold with equality at each node of the
branch-and-bound tree.

14 Linear Programming based Approaches for SRFLP

Exploring thousands of nodes, they successfully solved many instances with up to 30 facilities
and also produced lower bounds for larger instances with up to n = 100 using a pure
cutting plane approach. However, the running times were measured in several dozens of
hours for instances with n = 30. Additionally, the lower bounds for larger instances were
relatively weak when compared to those of already existing semidefinite approaches, e.g., the
semidefinite approach in [12].

2.3 Betweenness-based approach

We now look at the probably most successful approach for SRFLP based on linear program-
ming. Amaral [4] presented a quite unintuitive modeling which implicitly takes the quadratic
nature of SRFLP more into account than all previous approaches. The key idea is that we
only need to know which facilities are between a pair (i, k) in order to calculate their distance
dik. For this, let π = (π1, . . . , πn) be a valid ordering and let Bπ

ik the set of facilities between
i and k with respect to π. Then we have

dπik =
`i + `k

2
+
∑
j∈Bπik

`j. (2.11)

Motivated by this observation, Amaral [4] introduced the so-called betweenness variables bijk,
i, j, k ∈ [n], |{i, j, k}| = 3, i < k, with the meaning

bijk =

{
1, j lies between i and k
0, otherwise.

(2.12)

Each permutation π ∈ Πn corresponds to a vector b ∈ {0, 1}n(n−1)(n−2)/2 collecting the
betweenness variables defined in (2.12). In fact, the betweenness variables can be expressed
in quadratic terms of the linear ordering variables (2.1) by

bijk = uikukj + ujkuki.

Amaral [4] then defined the betweenness polytope

PBTW := conv
{
b ∈ {0, 1}n(n−1)(n−2)/2 : b represents a permutation π ∈ Πn

}
and presented a partial linear description of PBTW to optimize over it.
For each triple (i, j, k) of facilities, exactly one of these has to be located between the other
two, i.e., the equations

bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k, (2.13)

are valid for PBTW . Indeed, the smallest linear subspace that contains PBTW is exactly
described by equations (2.13) (see [76]). If we consider yet another facility h ∈ [n], h can
only lie between at most two of the three pairs (i, j), (i, k) and (j, k). Thus, the inequalities

bihj + bihk + bjhk ≤ 2, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (2.14)

Linear Programming based Approaches for SRFLP 15

are valid for PBTW . It turns out that h can not be located between exactly one of these pairs,
only between zero or two. This can be expressed by the inequalities

− bihj + bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k,

+ bihj − bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k,

+ bihj + bihk − bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k.

(2.15)

Amaral [4] generalized the inequalities (2.15) by presenting a family of more sophisticated
inequalities containing them: let β ≤ n be an even integer and let R ⊆ [n] be such that
|R| = β. Then for each r ∈ R, and for any partition (S, T) of R \ {r} such that |S| = β/2,
the inequality ∑

p,q∈S, p<q

bprq +
∑

p,q∈T, p<q

bprq ≤
∑

p∈S, q∈T, p<q

bprq (2.16)

is valid for PBTW .
With the help of (2.11), a suitable objective function for formulating SRFLP over PBTW is
given by

min
b∈PBTW

∑
i,j∈[n]
i<j

cij
∑

k∈[n]\{i,j}

`kbikj +
∑
i,j∈[n]
i<j

cij
`i + `j

2
. (2.17)

A lower bound for (2.17) is then obtained by solving the linear relaxation that includes
(2.13)–(2.15) and the box constraints

0 ≤ bijk ≤ 1, i, j, k ∈ [n], |{i, j, k}| = 3, i < k. (2.18)

In order to get stronger lower bounds, Amaral [4] suggested to use the inequalities (2.16)
with β = 6 as cutting planes. The resulting lower bounds turned out to be the optimal
value for all instances considered in [4]. Many instances with up to 35 facilities were solved
to global optimality. While often several hours of computing time are required for instances
with n = 35, the betweenness approach seems to outperform all other approaches in terms
of shorter running times for smaller instances with n ≤ 20. We will discuss the betweenness
approach in more detail in Section 2.4.
Some theoretical results are known supporting the strong computational results obtained by
solving only the linear relaxation. First, Amaral [4] showed that

min
∑
i,j∈[n]
i<j

cij
∑

k∈[n]\{i,j}

`kbikj +
∑
i,j∈[n]
i<j

cij
`i + `j

2

s.t. bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k,

bihj + bihk + bjhk ≤ 2, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k,

− bihj + bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (BTW)
+ bihj − bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k,

+ bihj + bihk − bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k,

bijk ∈ {0, 1}, i, j, k ∈ [n], |{i, j, k}| = 3, i < k,

16 Linear Programming based Approaches for SRFLP

is indeed a formulation for SRFLP. The equations (2.13) can be used to eliminate some of the
betweenness variables. The resulting projection of PBTW and PBTW itself have dimension
n(n−1)(n−2)/3 (see [76]). Second, the betweenness polytope PBTW induces a face of the cut
polytope PC [83]. Additionally, the inequalities (2.14) and (2.15) correspond to the so-called
triangle inequalities that are facet-defining for PC . In fact, the inequalities (2.16), which
include (2.15) for β = 4, are proven to be facet-defining for PBTW , whereas the inequalities
(2.14) do not induce a facet of PBTW in general (see [76]). Moreover, the family of inequalities
(2.16) corresponds to the so-called clique inequalities which are facet-defining for PC . As a
result, PBTW preserves some of the nice structural properties inherited from the cut polytope
PC .

2.4 Discussion on LP-based approaches for SRFLP

The intuitive mixed 0-1 LP formulation of Love & Wong [60] clearly is not useful for practical
purposes and even fails on solving very small instances with n ≤ 10 in reasonable time. Al-
though Amaral [1,3] improved the formulation by using known results for the linear ordering
polytope PLOP , these attempts are still dominated by the approaches presented in Section
2.2 and Section 2.3. Since the associate lower bounds are very weak, excessive memory and
computing time requirements arise. The branch-and-bound algorithm effectively degenerates
to complete enumeration. Already struggling on small instances, we get no acceptable lower
bounds for instances with n ≥ 20.
The study on the distance polytope P(n, `) by Amaral & Letchford [5] and their resulting
practical approach were a huge progress compared to the previous mixed 0-1 LP formulations.
Instances with up to n = 20 could be solved in a few seconds using this approach. The gaps
for all ‘classical’ SRFLP instances in the literature with n ≤ 100 remained smaller than 8%
using only a cutting plane approach. Even though the corresponding lower bounds were
computed with a time limit of one day, this was the first time linear programming was
applied to such large instances. Many of the the valid inequalities for P(n, `) were derived
through the connection to the cut cone CCn. While this is a fruitful source for obtaining a
better linear description of P(n, `), this also might hint at severe drawbacks of this approach.
In contrast to the betweenness polytope PBTW , the exact relation between the cut cone CCn
and P(n, `) is unknown. Even for n ≤ 5 and given lengths ` ∈ Zn≥1, one can easily find a
vector d ∈ Rn(n−1)/2

+ that satisfies all classes of inequalities presented in [5], but does not
belong to P(n, `). Additionally, it is well known that linear programming is not suited for
solving dense problems over the cut polytope (see e.g. [72]). Formulating SRFLP over P(n, `)
basically leads to such a dense problem. Therefore, we expect that the approach in [5] cannot
be used to solve instances considerably larger than n ≥ 30 in reasonable time, even if it is
enhanced with a better linear description of the distance polytope P(n, `).
The betweenness approach presented in Section 2.3 has some interesting computational prop-
erties. By using only a partial linear description of the betweenness polytope PBTW , Ama-
ral [4] solved many instances with n ≤ 35 to optimality. The lower bounds were quite strong
and always matched the optimal values. Although this is the case for all instances consid-
ered in [4], we have found randomly generated instances with only n = 6, where these lower

Linear Programming based Approaches for SRFLP 17

bounds are indeed not sufficient. Our tests indicate that the linear relaxation is optimal
for n ≤ 5. On the other hand, we have also solved instances with up to n = 50 with this
approach. Hence, the result is the following: if one is fortunate, the betweenness approach
can easily solve relatively large instances by using modern LP solvers and hardware; but if
one is unfortunate, even very small instances cannot be solved. Of course, more valid in-
equalities for PBTW could be added to further strengthen the linear relaxation, but again,
this does not guarantee that one will find an optimal solution. This is a major downside of
the betweenness approach compared to the exact approaches in Section 2.1 and Section 2.2.
A natural idea to fix this issue, is to include the integrality conditions of the betweenness
variables, i.e., solving the model (BTW) with a branch-and-bound approach. We will now
explain, why this does not lead to a satisfying exact solution approach.
The first problem arises when it comes to solving the basic linear relaxation of model (BTW).
It turns out that the simplex algorithm is incapable of solving it in reasonable time. That is
why Amaral [4] used an interior-point method for this purpose. Using Gurobi 9.0 on one core
on a Linux system with an Intel i7-4790k processor, the barrier algorithm solves the linear
relaxation for n = 42 in about 10 minutes. A concurrent run of primal and dual simplex, each
on one core, is not even finished after one day of running time. Unfortunately, the computa-
tion time cannot be reduced by a cutting plane approach, i.e., by separating only inequalities
that are violated by the current fractional solution. Doing so is even worse, because too many
inequalities are needed. This would increase the number of simplex iterations, which are very
expensive due to the number of variables and constraints, more and more. The poor behav-
ior of the simplex algorithm also concerns the reoptimization step after branching. Our tests
show that it is more effective to solve each node in the branch-and-bound tree from scratch
with the barrier algorithm than using the dual simplex. The other problem is simply the
number of nodes that have to be explored in a branch-and-bound approach. The linear re-
laxation has a very odd property: even if the lower bound matches the optimal value, the
majority of variables is still greatly fractional. Fixing one of the betweenness variables often
barely improves the lower bound, if at all. Sometimes hundred of nodes have to be explored
for randomly generated instances with only n = 20.
The best way to use the betweenness variables in an exact solution approach for SRFLP, is
probably to tighten the linear relaxation as far as possible with further valid inequalities.
Branching should only be done if it is really necessary, i.e., no violated inequality can be
found in reasonable time. By doing so, and accepting the very high memory and computing
time requirements, we believe that quite large instances could be solved with this approach.
The main question remains, how often the linear relaxation is insufficient and branching is
inevitable. However, we expect the lower bounds to be relatively close to the optimum in all
cases.
All in all, very tight bounds seem to be the key for solving the largest possible instances
of SRFLP. For this purpose, semidefinite relaxations (see e.g. [6, 8, 10, 12, 41, 43, 44]) are an
excellent alternative to the LP-based approaches presented in this chapter. We will address
existing semidefinite relaxations for SRFLP in Chapter 3 and further enhance them in Chapter
5. Chapter 4 is concerned with their suitable algorithmic treatment. The best semidefinite
relaxations will turn out to be much stronger than the linear relaxation of the betweenness
approach by Amaral [4]. Moreover, they will reveal no weaknesses on small instances as the

18 Linear Programming based Approaches for SRFLP

betweenness approach did. With an appropriate solution method, we will not only solve the
majority of instances in a noticeably smaller amount of time, but also use only a tiny fraction
of memory space compared to the interior-point methods for linear programming.

Chapter 3

Semidefinite Relaxations for SRFLP

The final conclusion at the end of Chapter 2 suggests to aim for stronger lower bounds than
possible with linear programming techniques. To achieve this, semidefinite relaxations are
a promising alternative for SRFLP. In this chapter, we present all semidefinite relaxations
used in [6, 8, 10, 12, 41, 42, 44] and how they can be constructed. More precisely, in Section
3.1 we show in detail how SRFLP can be formulated as a constrained quadratic optimization
problem in bivalent variables, which was first done in the initiating paper [6]. The semidef-
inite relaxations for SRFLP are then deduced in a canonical way in Section 3.2. All other
semidefinite approaches, that were proposed later, concentrated on reducing the number of
constraints [12], strengthening the relaxations with additional inequalities [8, 44], or using a
suitable combination of optimization methods for solving the relaxations [44].
We remark that the presented semidefinite relaxations are not restricted to SRFLP and easily
can be adapted for some other related problems. They can be used for more general quadratic
ordering problems by adapting the objective function appropriately, see [44]. However, we
mainly refer to the setting of SRFLP. Using semidefinite relaxations for these problems is
very promising, since they can be formulated as a max-cut problem with some additional
constraints. In fact, the feasible set is a face of a cut polytope [17]. Thus, conveying methods
that are known to be efficient for the max-cut problem to SRFLP, or quadratic ordering
problems in general, seems to be a natural idea.
We will also prove in Section 3.2 that the semidefinite relaxations for SRFLP are indeed at
least as strong as the linear relaxation of the betweenness formulation (BTW) (see Section
2.3). Section 3.3 is concerned with the application of interior-point methods to the presented
semidefinite relaxations and will reveal some major issues when this direct solution approach
is used. More suitable algorithmic approaches, which are based on Lagrangian duality, are
addressed in Chapter 4.

3.1 A bivalent quadratic formulation

Many combinatorial optimization problems, including SRFLP, can be formulated as a binary
quadratic optimization problem. A standard semidefinite relaxation for these problems is

19

20 Semidefinite Relaxations for SRFLP

then obtained in a routine manner. Concerning SRFLP, the ordering variables (2.1) provide
the basis for a binary quadratic formulation, respectively for the semidefinite relaxations.
However, it is more convenient to use variables with values in {−1, 1}. Therefore, we introduce
the following bivalent ordering variables yij, i, j ∈ [n], i < j:

yij =

{
+1, if i lies to the left of j
−1, otherwise.

(3.1)

These variables have a close connection to the betweenness variables (2.12). For instance,
for i, j, k ∈ [n], i < j < k, we have the equivalences

bijk = 1 ⇐⇒ (yij = 1 ∧ yjk = 1) ∨ (yij = −1 ∧ yjk = −1) ⇐⇒ yijyjk = 1.

Said in words: j lies between i and k if and only if the relative ordering of i and j equals the
relative ordering of j and k. By case analysis, the betweenness variables can be expressed in
quadratic terms of the bivalent ordering variables (3.1) in the following way (see [43]):

bijk =
1− yjiyjk

2
, i, j, k ∈ [n], j < i < k, bijk =

1 + yijyjk
2

, i, j, k ∈ [n], i < j < k,

bijk =
1− yijykj

2
, i, j, k ∈ [n], i < k < j.

(3.2)

Using these transformations, we can rewrite the objective function (2.17) as

∑
i,j∈[n]
i<j

∑
k∈[n]

cij
2
`k −

∑
i,j∈[n]
i<j

cij
2

∑
k∈[n]
k<i

`kykiykj −
∑
k∈[n]
i<k<j

`kyikykj +
∑
k∈[n]
k>j

`kyikyjk

 . (3.3)

Furthermore, we need constraints on the ordering variables (3.1) that restrict them to valid
orderings only. Tucker [82] and Younger [84] showed that if the so-called 3-cycle inequalities

− 1 ≤ yij + yjk − yik ≤ 1, i, j, k ∈ [n], i < j < k, (3.4)

are satisfied, then the vector y ∈ {−1, 1}n(n−1)/2 of ordering variables represents a valid
ordering. The inequalities (3.4) can also be written as

|yij + yik − yjk| = 1, i, j, k ∈ [n], i < j < k.

Squaring both sides leads to (see [44])

y2
ij + y2

jk + y2
ik + 2(yijyjk − yijyik − yikyjk) = 1, i, j, k ∈ [n], i < j < k,

which is equivalent to

yijyjk − yijyik − yikyjk = −1, i, j, k ∈ [n], i < j < k, (3.5)

Semidefinite Relaxations for SRFLP 21

as y2
ij = 1 for all i, j ∈ [n], i < j. Throughout this thesis, we will call the equations (3.5)

3-cycle equations. Interestingly, we also obtain these 3-cycle equations if we substitute the
betweenness variables in (2.13) by using transformations (3.2):

bijk + bikj + bjik =
1 + yijyjk

2
+

1− yikyjk
2

+
1− yijyik

2
= 1

⇐⇒ yijyjk − yikyjk − yijyik = −1.

Hence, we obtain the following bivalent quadratic formulation for SRFLP:

min K −
∑
i,j∈[n]
i<j

cij
2

∑
k∈[n]
k<i

`kykiykj −
∑
k∈[n]
i<k<j

`kyikykj +
∑
k∈[n]
k>j

`kyikyjk


s.t. yijyjk − yijyik − yikyjk = −1, i, j, k ∈ [n], i < j < k,

yij ∈ {−1, 1}, i, j ∈ [n], i < j,

(3.6)

where K :=
∑
i,j∈[n]
i<j

∑
k∈[n]

cij
2
`k.

It is shown in [17] that the 3-cycle equations (3.5) describe the smallest linear subspace that
contains the so-called quadratic ordering polytope

PQO := conv
{
yy> : y ∈ {−1, 1}(

n
2), |yij + yjk − yik| = 1, i, j, k ∈ [n], i < j < k

}
. (3.7)

We can now see that SRFLP basically corresponds to a max-cut problem with additional
equality constraints, namely the 3-cycle equations (3.5). Moreover, we have PQO (PC for
n ≥ 3 and PQO is a face of PC (see [17]).
For the sake of completeness, and for a better understanding of the problem structure, we will
now prove why the 3-cycle equations (3.5) are indeed both necessary and sufficient in order
to model only valid orderings. As a byproduct, this also gives a hint at how good feasible
solutions, i.e., orderings of the facilities, can be found heuristically. Such primal heuristics
that are based on the solutions of semidefinite relaxations for SRFLP are discussed in Section
5.2.
For modeling only valid orderings, we have to ensure transitivity: if the relative ordering of
i and j is the same as the the relative ordering of j and k, the same must hold for i and k,
e.g., if i lies to the left of j and j lies to the left of k, i also must lie to the left of k. By
introducing additional variables yij, i, j ∈ [n], i > j, with yij = −yji satisfying the identity

yij + yji = 0, i, j ∈ [n], i 6= j, (3.8)

we can formally state this transitivity condition as

yij = yjk =⇒ yik = yij, i, j, k ∈ [n], |{i, j, k}| = 3. (3.9)

This can also be written as the quadratic constraints (see [6])

(yij + yjk) (yik − yij) = 0, i, j, k ∈ [n], |{i, j, k}| = 3,

22 Semidefinite Relaxations for SRFLP

which expand to

yijyik − y2
ij + yjkyik − yjkyij = 0, i, j, k ∈ [n], |{i, j, k}| = 3. (3.10)

Since y2
ij = 1, the latter equations contain the 3-cycle equations (3.5). However, both sets of

equations are equivalent, because (3.10) contains only redundant equations for choices other
than i < j < k.
We now know that the 3-cycle equations (3.5) are indeed necessary. In order to prove that
they are sufficient, we define the set

Yn :=
{
y ∈ {−1, 1}n(n−1)/2 : y satisfies (3.5)

}
.

It is then shown in [6], how each y ∈ Yn corresponds to a unique permutation π ∈ Πn,
and vice versa. It is straight forward to construct a corresponding vector y ∈ Yn for a given
permutation π = (π1, . . . , πn) ∈ Πn. For all i, j ∈ [n], i < j, we set

yπiπj := 1, (3.11)

and then use the identity (3.8). The resulting vector clearly satisfies the transitivity con-
ditions (3.9) by construction, and hence, also the derived equations (3.5). Moreover, each
permutation π ∈ Πn yields a different y ∈ Yn, confirming that |Yn| ≥ |Πn| = n!.
The 3-cycle equations (3.5) are also sufficient, because there is a bijection f : Yn → Πn, which
was proven in [17] in a more general setting. However, we follow the proofs in [6,8,12] which
are closely related to SRFLP. Such a bijection f : Yn → Πn, y 7→ (π1, . . . , πn), is therein given
by

πk :=
n+ 1− Pk

2
, k ∈ [n], (3.12)

where
Pk :=

∑
j∈[n]
j 6=k

ykj =
∑
j∈[n]
j<k

−yjk +
∑
j∈[n]
j>k

ykj, k ∈ [n]. (3.13)

Due to their definition, the Pk values belong to the set

P := {−(n− 1),−(n− 3), . . . , n− 3, n− 1} . (3.14)

Thus, we have πk ∈ {1, . . . , n} for all k ∈ [n]. Therefore, π = (π1, . . . , πn) is a member of Πn

if and only if all Pk values are distinct.

Lemma 3.1.1 ([6, Lemma 1])
If y ∈ Yn, then all Pk values are distinct, i.e., f(y) is a valid ordering.

Proof. Assume that we have Pk1 = Pk2 for k1, k2 ∈ [n], k1 6= k2, w.l.o.g. k1 < k2. Definition
(3.13) gives∑
k∈[n]
k<k1

−ykk1 +
∑
k∈[n]

k1<k<k2

yk1k +
∑
k∈[n]
k2<k

yk1k + yk1k2 =
∑
k∈[n]
k<k1

−ykk2 +
∑
k∈[n]

k1<k<k2

−ykk2 +
∑
k∈[n]
k2<k

yk2k − yk1k2 ,

Semidefinite Relaxations for SRFLP 23

which leads to ∑
k∈[n]
k<k1

−ykk1yk1k2 +
∑
k∈[n]

k1<k<k2

yk1kyk1k2 +
∑
k∈[n]
k2<k

yk1kyk1k2 + 1

=
∑
k∈[n]
k<k1

−ykk2yk1k2 +
∑
k∈[n]

k1<k<k2

−ykk2yk1k2 +
∑
k∈[n]
k2<k

yk2kyk1k2 − 1,

by multiplying by yk1k2 on both sides and using y2
k1k2

= 1. Rearranging then yields∑
k∈[n]
k<k1

− (ykk2yk1k2 + ykk1yk1k2) +
∑
k∈[n]

k1<k<k2

(ykk2yk1k2 − yk1kyk1k2)

+
∑
k∈[n]
k2<k

(yk2kyk1k2 − yk1kyk1k2) = 2.

Due to y ∈ Yn, the following equations hold:

−ykk2yk1k2 + ykk1yk1k2 = ykk1ykk2 − 1, k ∈ [n], k < k1 < k2,

−ykk2yk1k2 − yk1kyk1k2 = −yk1kykk2 − 1, k ∈ [n], k1 < k < k2,

yk2kyk1k2 − yk1kyk1k2 = yk1kyk2k − 1, k ∈ [n], k1 < k2 < k.

Thus, we obtain∑
k∈[n]
k<k1

(ykk1ykk2 − 1) +
∑
k∈[n]

k1<k<k2

(−yk1kykk2 − 1) +
∑
k∈[n]
k2<k

(yk1kyk2k − 1) = 2,

which is equivalent to ∑
k∈[n]
k<k2

ykk1ykk2 −
∑
k∈[n]

k1<k<k2

yk1kykk2
∑
k∈[n]
k2<k

yk1kyk2k = n.

This is a contradiction, because the left-hand side is bounded from above by n− 2.

It remains to prove that each permutation π ∈ Πn is attained for exactly one y ∈ Yn. For
this purpose, we consider a system of n equations in

(
n
2

)
variables yij ∈ {−1, 1}, i, j ∈ [n],

i < j. We know that all values Pk, k ∈ [n], as defined in (3.13) are distinct (see Lemma 3.1.1)
and have values in the set P , see (3.14). Therefore, each permutation π ∈ Πn is represented
by exactly one y ∈ Yn if and only if the system

Pk =
∑
j∈[n]
j<k

−yjk +
∑
j∈[n]
j>k

ykj = βk, k ∈ [n], (3.15)

has a unique solution, where the values βk on the right hand side satisfy

P = {−(n− 1),−(n− 3), . . . , n− 3, n− 1} = {βk : k ∈ [n]} . (3.16)

24 Semidefinite Relaxations for SRFLP

Lemma 3.1.2 ([8, Lemma 3])
The system (3.15) has a unique solution.

Proof. The proof is by induction. We have two base cases for n ∈ {2, 3}. For n = 2, we have
P = {−1, 1} = {β1, β2} and the system (3.15) reads

y12 = β1,

−y12 = β2 = −β1,

which always has a unique solution. For n = 3, we have P = {−2, 0, 2} = {β1, β2, β3} and
get the system

y12 + y13 = β1,

−y12 + y23 = β2,

−y13 − y23 = β3.

We can see by case analysis that this system admits a unique solution for all choices of
βk, k = 1, 2, 3. For example, for β1 = −2, β2 = 0, β3 = 2 the unique solution is y12 = −1,
y13 = −1, y23 = −1. This concludes the base cases.
Let n ≥ 4 and k1, k2 ∈ [n] be such that βk1 = −(n − 1) and βk2 = n − 1, which exist by
assumption. In terms of (3.12), k1 is located at position n and k2 is located at position 1.
Given k1 and k2, any solution of system (3.15) must satisfy

yjk1 = +1 for all j ∈ [n], j < k1, yk1,j = −1 for all j ∈ [n], j > k1,

yjk2 = −1 for all j ∈ [n], j < k2, yk2,j = +1 for all j ∈ [n], j > k2.
(3.17)

Now consider any equation of system (3.15) for k ∈ [n] \ {k1, k2}. We have four possible
cases:

• k < k1, k < k2 where ykk1 = 1, ykk2 = −1:∑
j∈[n]
j<k

−yjk +
∑
j∈[n]
j>k

j 6=k1,k2

ykj + ykk1 + yk,k2 = βk,

• k1 < k < k2 where yk1k = −1, ykk2 = −1:∑
j∈[n]
j<k
j 6=k1

−yjk − yk1k +
∑
j∈[n]
j>k
j 6=k2

ykj + yk,k2 = βk,

• k2 < k < k1 where ykk1 = 1, yk2k = 1:∑
j∈[n]
j<k
j 6=k2

−yjk − yk2k +
∑
j∈[n]
j>k
j 6=k1

ykj + yk,k1 = βk,

Semidefinite Relaxations for SRFLP 25

• k > k1, k > k2 where yk1k = −1, yk2k = 1:∑
j∈[n]
j<k

j 6=k1,k2

−yjk − yk1k − yk2k +
∑
j∈[n]
j>k

ykj = βk.

In all four cases, cancellation due to the conditions (3.17) occurs. Hence, we get a reduced
system with only n − 2 equations and

(
n−2

2

)
unknowns. This system has the same form as

(3.15). By our induction hypothesis, the reduced system has a unique solution. The solution
can be extended to a uniquely defined solution of the original system with the help of (3.17).
We conclude that system (3.15) has a unique solution.

As a result, Yn contains at most n! elements. Thus, we have |Yn| = |Πn| and any solution of
system (3.15) yields a y ∈ Yn.

Theorem 3.1.3 ([8, Theorem 1])
The function f : Yn → Πn as defined in (3.12) and (3.13) is a bijection.

Proof. Assume, we have y1, y2 ∈ Yn with f(y1) = f(y2). Then we get y1 = y2 by applying
Lemma 3.1.2. Thus, f is injective. Moreover, applying Lemma 3.1.2 and the fact |Yn| = |Πn|
also yields a y ∈ Yn with f (y) = π for each π ∈ Πn. Hence, f is surjective.

3.2 Semidefinite relaxations

Recall that an exact formulation for SRFLP (see (3.6)) is given by

min K −
∑
i,j∈[n]
i<j

cij
2

∑
k∈[n]
k<i

`kykiykj −
∑
k∈[n]
i<k<j

`kyikykj +
∑
k∈[n]
k>j

`kyikyjk


s.t. yijyjk − yijyik − yikyjk = −1, i, j, k ∈ [n], i < j < k,

yij ∈ {−1, 1}, i, j ∈ [n], i < j.

(3.18)

3.2.1 Basic relaxations

We now move to matrix-based relaxations for SRFLP. For this purpose, we collect all ordering
variables (3.1) in a vector y and define the matrix

Y := yy> ∈ R(n2)×(n2).

Clearly, the matrix Y has rank one, rank(Y) = 1, since all rows are pairwise linearly depen-
dent. Additionally, Y is symmetric, Y ∈ S(n2)

, and we have

v>Y v = v>yy>v =
(
v>y

)2 ≥ 0

26 Semidefinite Relaxations for SRFLP

for all v ∈ R(n2). Hence, Y is positive semidefinite, Y � 0. Finally, the main diagonal entries
are all ones, since they correspond to y2

ij = 1. For this, we write diag(Y) = e, where e is
the vector of all ones of appropriate dimension. With a suitable choice of the symmetric cost
matrix C, SRFLP can be formulated as the following matrix-based optimization problem,
primarily done in [6]:

min 〈C, Y 〉+K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k,

diag(Y) = e, (3.19)
rank(Y) = 1,

Y � 0.

Removing the nonconvex rank-one constraint yields the basic semidefinite relaxation

min 〈C, Y 〉+K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k,

diag(Y) = e, (SDP1)
Y � 0.

This relaxation has O(n3) constraints, and thus, is difficult to solve with interior-point meth-
ods for even medium-sized instances. This is why Anjos & Yen [12] suggested to sum up the
3-cycle equations (3.5) over k. This yields the O(n2) constraints∑

k∈[n]
k 6=i,j

Yij,jk −
∑
k∈[n]
k 6=i,j

Yij,ik −
∑
k∈[n]
k 6=i,j

Yik,jk = −(n− 2), i, j ∈ [n], i < j. (3.20)

In fact, if we substitute the 3-cycle equations in (3.19) by equations (3.20), the resulting
optimization problem

min {〈C, Y 〉+K : Y satisfies (3.20), diag(Y) = e, rank(Y) = 1, Y � 0} (3.21)

is another exact formulation for SRFLP, see [12]. Dropping the rank-one constraint yields the
semidefinite relaxation

min {〈C, Y 〉+K : Y satisfies (3.20), diag(Y) = e, Y � 0} (SDP0)

for SRFLP, which is cheaper, but also weaker than (SDP1).

3.2.2 Strengthened relaxations

To strengthen the relaxation (SDP1), we consider the particular cut polytope

PC := conv
{
yy> : y ∈ {−1, 1}(

n
2)
}

Semidefinite Relaxations for SRFLP 27

and its semidefinite relaxation{
Y ∈ R(n2)×(n2) : diag(Y) = e, Y � 0

}
.

Since SRFLP corresponds to a max-cut problem with additional constraints (3.5), all valid
inequalities for the cut polytope PC can be used to tighten (SDP1). In particular, Anjos &
Vanelli [8] suggested to add the well-known triangle inequalities that are facet-defining for
the cut polytope PC (see e.g. [21]). These inequalities define the so-called metric polytope

M :=

Y ∈ R(n2)×(n2) :

 1 1 1
1 −1 −1
−1 1 −1
−1 −1 1

(YijYik
Yjk

)
≥

−1
−1
−1
−1

 , 1 ≤ i < j < k ≤
(
n

2

) .

(3.22)
Thus, Anjos & Vanelli [8] proposed the relaxation

min 〈C, Y 〉+K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k, (3.23)
Yi,j + Yi,k + Yj,k ≥ −1, 1 ≤ i < j < k ≤ n(n− 1)/2,

Yi,j − Yi,k − Yj,k ≥ −1, 1 ≤ i < j < k ≤ n(n− 1)/2, (SDP2)
− Yi,j + Yi,k − Yj,k ≥ −1, 1 ≤ i < j < k ≤ n(n− 1)/2,

− Yi,j − Yi,k + Yj,k ≥ −1, 1 ≤ i < j < k ≤ n(n− 1)/2,

diag(Y) = e,

Y � 0.

Since there are O(n6) triangle inequalities, Anjos & Vanelli [8] suggested to include only a
small subset of them by using them in a cutting plane approach.
We now show that (SDP2) always yields stronger lower bounds than the linear relaxation of
the betweenness model (BTW) in Section 2.3. For this purpose, we assume that the optimum
in (SDP2) is attained. This property will be addressed in Section 3.3.

Proposition 3.2.1
(SDP2) is at least as strong as the linear relaxation of model (BTW).

Proof. Let Y ∗ be an optimal solution of (SDP2) and let z∗ be the corresponding optimal
value. We now construct a feasible solution b ∈ [0, 1]n(n−1)(n−2)/2 for the linear relaxation of
(BTW) that has the same objective value z∗. For this, we define

bijk :=


1−Y ∗

ji,jk

2
, i, j, k ∈ [n], j < i < k

1+Y ∗
ij,jk

2
, i, j, k ∈ [n], i < j < k

1−Y ∗
ij,kj

2
, i, j, k ∈ [n], i < k < j.

(3.24)

The constraints diag(Y ∗) = e and Y ∗ � 0 together imply that all entries of Y ∗ are in [−1, 1],
and hence, the betweenness variables defined in (3.24) satisfy the bound constraints (2.18).

28 Semidefinite Relaxations for SRFLP

For i, j, k ∈ [n], i < j < k, we have

bijk + bikj + bjik =
1 + Y ∗ij,jk

2
+

1− Y ∗ik,jk
2

+
1− Y ∗ij,ik

2

=
3

2
+

1

2

Y ∗ij,jk − Y ∗ik,jk − Y ∗ij,ik︸ ︷︷ ︸
=−1 by (3.23)


=

3

2
− 1

2
= 1,

and thus, the variables bijk satisfy (2.13). To avoid case analysis in the following, we assume
no particular ordering of the indices i, j, k, h. Instead, we use the property

babc =
1 + Yab,bc

2
=

1− Yba,bc
2

. (3.25)

Using (3.25) we obtain

bihj + bihk + bjhk =
1 + Y ∗ih,hj

2
+

1 + Y ∗ih,hk
2

+
1 + Y ∗jh,hk

2

=
3

2
+

1

2

(
Y ∗ih,hj + Y ∗ih,hk + Y ∗jh,hk

)
=

3

2
+

1

2

−Y ∗hi,hj − Y ∗hi,hk − Y ∗hj,hk︸ ︷︷ ︸
≤1


≤ 3

2
+

1

2
= 2,

for all i, j, k, h ∈ [n], |{i, j, k, h}| = 4, since Y ∗hi,hj + Y ∗hi,hk + Y ∗hj,hk ≥ −1 corresponds to a
triangle inequality on the pairs (hi) , (hj) and (hk). Thus, the inequalities (2.14) are satisfied.
Moreover, we have

−bihj + bihk + bjhk = −
1 + Y ∗ih,hj

2
+

1 + Y ∗ih,hk
2

+
1 + Y ∗jh,hk

2

=
1

2
+

1

2

(
−Y ∗ih,hj + Y ∗ih,hk + Y ∗jh,hk

)
=

1

2
+

1

2

Y ∗hi,hj − Y ∗hi,hk − Y ∗hj,hk︸ ︷︷ ︸
≥−1


≥ 1

2
− 1

2
= 0,

since again, a triangle inequality on the pairs (hi), (hj) and (hk) arises. Analogously, the same
holds for all inequalities (2.15). As a result, the vector b of betweenness variables defined
in (3.24) is feasible for the linear relaxation of (BTW). By construction of the objective
function (3.3), the objective value of b in (BTW) coincides with z∗. Hence, the optimal value
of the linear relaxation of (BTW) is less than or equal to z∗, which is the optimal value of
(SDP2).

Semidefinite Relaxations for SRFLP 29

As already mentioned in Section 2.3, we see in the proof of Proposition 3.2.1 that the in-
equalities (2.14) and (2.15) correspond to the triangle inequalities of the cut polytope. While
(SDP2) involves O(n6) triangle inequalities, the linear relaxation of (BTW) contains only
O(n4) of them. This difference comes from the more global modeling of the matrix-based
approach, since it involves products of ordering variables that do not share a common facil-
ity. This is not possible with the linear model (BTW) which exploits some kind of sparsity.
Moreover, it is not possible to express the bivalent ordering variables (3.1) in terms of the
betweenness variables (2.12), see [7]. Due to the clearly larger set of triangle inequalities and
the additional semidefinite constraint Y � 0, (SDP2) yields much tighter lower bounds than
the linear relaxation of (BTW).
All semidefinite relaxations presented so far are formulated on the quadratic ordering poly-
tope PQO, see (3.7). Hungerländer & Rendl [44] worked with the linear-quadratic ordering
polytope

PLQO := conv

{(
1
y

)(
1
y

)>
: y ∈ {−1, 1}(

n
2), y satisfies (3.5)

}
(3.26)

instead, and defined the matrix

Y :=

(
1
y

)(
1
y

)>
=

(
1 y>

y yy>

)
=

(
1 y>

y Y

)
.

Consider now again the matrix Y . We have

Y = yy> ⇐⇒ Y − yy> = 0.

Since the zero matrix is positive semidefinite, Hungerländer & Rendl [44] relaxed the non-
convex equation Y − yy> = 0 to

Y − yy> � 0 ⇐⇒ Y � 0,

which is convex due to the Schur complement lemma (see e.g. [41]). As Y � 0 is in general
a stronger constraint than Y � 0 [43], the semidefinite relaxation (SDP2) can be improved
by replacing Y by Y .
To further improve the relaxation, Hungerländer & Rendl [44] suggested to use an additional
class of O(n5) ‘matrix cuts’. To this end, consider the 3-cycle inequalities (3.4) which also
can be written as

1− yij − yjk + yik ≥ 0, 1 + yij + yjk − yik ≥ 0, i, j, k ∈ [n], i < j < k. (3.27)

A generic approach by Lovász and Schrijver [59] then multiplies the inequalities (3.27) by
the nonnegative expressions (1 − ylm) and (1 + ylm) for any l,m ∈ [n], l < m. Thus, for all
i, j, k, l,m ∈ [n], i < j < k, l < m, we obtain the Lovász-Schrijver-cuts

−1− ylm ≤ yij + yjk − yik + yij,lm + yjk,lm − yik,lm ≤ 1 + ylm,

−1 + ylm ≤ yij + yjk − yik − yij,lm − yjk,lm + yik,lm ≤ 1− ylm.
(3.28)

30 Semidefinite Relaxations for SRFLP

Similar to the metric polytopeM, we define

LS :=
{
Y ∈ R((n2)+1)×((n2)+1) : Y satisfies (3.28)

}
.

Altogether, Hungerländer & Rendl [44] proposed the following semidefinite relaxation for
SRFLP:

min 〈C, Y 〉+K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k,

diag(Y) = e,

Y ∈M, (SDP3)

Y ∈ LS,
Y � 0.

Additionally, we can break the natural symmetry of SRFLP by fixing any single ordering
variable yij, e.g., y12 = 1.

3.3 Performance of interior-point methods for SRFLP

Interior-point methods (IPMs) are theoretically the most efficient solution method for all
reasonably defined semidefinite programs [33]. Due to their second-order nature, they are
very robust and yield highly accurate solutions within polynomial time. This makes them
especially interesting for problems, for which no customized algorithms are available [23]. Nu-
merical results show that primal-dual path-following interior-point methods are the method
of choice when it comes to optimizing over the elliptope in a reliable, efficient and accurate
way [23, 41]. Therefore, it is not surprising that such methods were applied to the semidefi-
nite relaxations for SRFLP, initially done in [6]. In the following, we recap how interior-point
methods were used in [6,8–10,12] and how they performed. Afterwards, we give some insights
into their scalability for large SRFLP instances and the associated limitations.
Although (SDP2) has O(n6) constraints, all semidefinite relaxations presented in Section
3.2 have a polynomial size in the number of facilities n. Hence, if they admit primal or
dual strictly feasible solutions, they can be solved by primal-dual interior-point methods in
polynomial time. Indeed, (SDP1) and its corresponding dual problem, denoted by (DSDP1),
are strictly feasible [44], i.e., strong duality holds and the optimal value is attained in both
problems. For instance, our numerical tests have shown that the symmetric matrix Y with
the entries

Yij,kl :=


1, if i = k ∧ j = l

−1
3
, if j = k ∧ i < j < l

1
3
, if (i = k ∧ i < j < l) ∨ (j = l ∧ i < j < k)

0, otherwise

(3.29)

on its upper triangular part is positive definite for all n ≤ 100. Clearly, it is also feasible
for (SDP1). By setting the dual variables of all 3-cycle-equations (3.5) to zero, the strict

Semidefinite Relaxations for SRFLP 31

feasibility of (DSDP1) follows from the strict feasibility of the dual problem of the basic
semidefinite max-cut relaxation (see e.g. [33]). Note that the matrix Y given by (3.29) also
satisfies all inequalities of (SDP3), and of course, all equations of (SDP0). Analogously, these
semidefinite programs and their corresponding dual problems are strictly feasible.
The very first computational results for the basic semidefinite relaxation (SDP1) were pre-
sented in [6] and the subsequent paper [9]. Using the interior-point solver CSDP (version
5.0) [15, 16] on a 2.0 GHz Dual Opteron with 16 GB RAM, (SDP1) was solved for up to
n = 40. The relaxations were solved within 3000 seconds and the optimality gaps typically
remained smaller than 1%. These bounds were also used in a branch-and-bound algorithm
in [9]. However, the results were quite sobering, since branching improved the bound of the
root node only slightly. As concluded in [9], considerably larger running times would be
necessary to obtain optimal solutions this way.
This motivated Anjos & Vanelli [8,10] to work with tighter relaxations by adding the triangle
inequalities to (SDP1), yielding the improved relaxation (SDP2). Using the same hardware
and software, they first solved the relaxation (SDP1) and then iteratively added some violated
triangle inequalities in a cutting plane approach. At each iteration, the optimal solution of
the relaxation is used to find feasible layouts heuristically (see Section 5.2) and to find the
300 to 400 most-violated triangle inequalities. These inequalities are added to the relaxation
which is then again solved from scratch. Instances with up to n = 30 were solved to global
optimality using this approach. However, the running times were at least a couple of hours
for n ≥ 25, and even more than two days for one particular instance. The number of cutting
plane iterations was at most 31 and not more than 11000 inequalities were in total added for
every instance. Note that the relaxation does not need to be exact in order to prove global
optimality. An absolute distance of the computed lower bound to the value of a known
feasible solution smaller than one is sufficient, since the values of all solutions differ from
each other by integral values only.
Lower bounds for larger instances with up to n = 100 were obtained in [12] by using the
relaxation (SDP0) and the same interior-point solver CSDP (version 5.0) [15, 16]. The calcu-
lations were carried out on a faster machine with a 2.4 GHz Quad Opteron processor and
16 GB RAM. The computed lower bounds were often about 1% weaker than the bounds
for (SDP1) and even considerably weaker on a few instances. For n ≤ 56, the time saving
compared to (SDP1) was up to 66%. The optimality gaps typically remained smaller than
3% by using (SDP0), but more than ten days of CPU time were still required to solve the
relaxation for n = 100.
The above results show that applying interior-point methods to semidefinite relaxations for
SRFLP are very double-edged. On the one hand, many previously unsolved instances with
up to 30 facilities were solved in [8, 10] by using a sole cutting plane approach, i.e., without
branching. Additionally, relatively strong lower bounds, which are only a few percentage
points away from the optimum, were obtained for up to 100 facilities in [12]. On the other
hand, the computing times increased dramatically with the number of facilities and added in-
equalities. The running times for successfully solved small instances were almost always much
higher than those of the betweenness approach presented in [4], see Section 2.3. Although
the semidefinite bounds are remarkably tight, an exact solution approach with interior-point

32 Semidefinite Relaxations for SRFLP

methods suffers from too many constraints or too slowly moving lower bounds in an branch-
and-bound framework. In the following, we investigate why applying interior-point methods
to semidefinite relaxations for SRFLP, such as (SDP2), is challenging in practice.
Although interior-point methods have polynomial time complexity and require only a few
iterations, the computational effort for a single iteration may be very high and depends on
the structure of the concrete given problem [16]. Whereas the memory requirement increases
quadratically, the running time has a cubic growth in the matrix dimension and the number
of constraints for problems with sparse constraints, which is the case for our semidefinite
relaxations [16]. Therefore, the computational effort for one iteration is at least O(m3), where
m is the number of constraints. This clarifies why (SDP0) with only O(n2) constraints is
computationally feasible for n = 100, whereas (SDP1) with O(n3) constraints and especially
(SDP2) with O(n6) constraints are too expensive. When (SDP3) is used, the number of
cuts we can add to strengthen the relaxation is severely limited. Since efficient warm start
strategies are not available for interior-point methods in general, the relaxation must be
solved from scratch several times, leading to significantly increasing running times. Hence,
finding an appropriate small selection of promising cuts and removing cuts that are not
needed, is crucial for the number of cutting plane iterations and the overall performance.
These difficulties are not restricted to SRFLP and also arise in other semidefinite relaxations
for combinatorial problems [36], e.g., the max-cut problem [23]. Typically, many inequalities
are violated by the current fractional solution and it is challenging to identify a small subset
of those inequalities that are likely to be active at the optimum [23]. Computational results
show that adding the most-violated inequalities at each iteration leads to a large number of
cutting plane iterations. This is mainly because only a small fraction of inequalities added
this way is actually active at the optimum [23].
Despite their nice theoretical properties, interior-point methods are not well-suited to solve
tight semidefinite relaxations for large-scale SRFLP instances. They lack the possibility to
exploit the sparsity of constraint matrices [33] and lead to excessive running times when
many constraints are present. To solve (SDP2) or even tighter relaxations such as (SDP3) for
large-scale SRFLP instances, different solutions methods have to be applied. Such customized
methods should be able to deal with much more constraints and should allow to exploit
the sparsity of constraint matrices. Typically, this leads to a tradeoff between the accuracy
of the solution and the running time. The potential loss of accuracy is not that critical for
combinatorial problems such as SRFLP, since lower bounds can be ‘rounded’ up or can be used
in a branch-and-bound algorithm. In the next chapter, we present two specific approaches
that fulfill our needs for large semidefinite relaxations and SRFLP instances.

Chapter 4

Practical Solution Methods based on
Lagrangian Relaxation

Throughout this chapter, we consider any semidefinite relaxation for SRFLP that is formulated
over the linear-quadratic ordering polytope PLQO (3.26), such as (SDP3). However, in view of
our further enhancements in Chapter 5, we also allow other inequalities than those involved
in (SDP3).
To simplify the notation, we use n∗ :=

(
n
2

)
+ 1 in the following. Note that we can write any

semidefinite relaxation for SRFLP over PLQO in the compact form

min 〈C,X〉
s.t. A(X) ≤ a

B(X) = e
X � 0,

(4.1)

where C,X ∈ Sn∗ and the cost matrix C is chosen appropriately. Here, the linear operator
B : Sn∗ → RmE collects all mE = n∗ +

(
n
3

)
equations, i.e., diag(X) = e and the 3-cycle equa-

tions (3.5). Moreover, the linear operator A : Sn∗ → RmI collects all considered inequalities,
where the right hand side a ∈ RmI is chosen appropriately.
We already know (see Section 3.3) that a semidefinite relaxation of type (4.1) cannot be
solved by interior-point methods for interesting problem sizes, say n ≥ 50. However, an
approximate solution of the relaxation is already sufficient for practical purposes. To handle
relaxations with many constraints for large-scale problems, we have to use a solution approach
that exploits the sparsity of the constraint matrices. The first attempt to solve the basic
semidefinite relaxation (SDP1) with up to 80 facilities was done in [6]. Therein, the spectral
bundle (SB) solver [34,35] was used. The implemented spectral bundle method is well-known
to be suited for large-scale semidefinite programs. However, its usage comes at the cost of
a poor convergence rate, since it is only a first-order method. In fact, the computational
results in [6] and [12] demonstrate, that solving the weaker relaxation (SDP0) by using a
primal-dual interior-point method yields much stronger lower bounds in significantly less
time than applying the spectral bundle method to (SDP1). Another drawback of the latter
approach is that we have no direct access to the primal variable X. This makes finding good
feasible orderings and especially separating the inequalities much harder.

33

34 Practical Solution Methods based on Lagrangian Relaxation

More efficient and accurate solution approaches use the idea of Lagrangian relaxation to
handle the large set of constraints in an elegant way. Hungerländer & Rendl [44] adapted the
specific bundle approach in [23] to solve their proposed relaxation (SDP3). This approach
was prior also successfully applied to the max-cut problem in [72]. The bundle approach
consists of a suitable combination of interior-point methods and the bundle method. While a
few constraints are maintained explicitly in a subproblem that is solved by using an interior-
point method, the majority of constraints is lifted into the objective function via Lagrangian
duality. This leads to a convex but nonsmooth optimization problem, where the bundle
method is used to approximate the optimal dual multipliers. We will deal with this approach
in Section 4.1.
In Section 4.2, we present our suggested solution approach for the semidefinite relaxations
for SRFLP. It consists of the ideas in [62] and the practical implementation in [52]. Whereas
Hungerländer & Rendl [44] work with a partial Lagrangian, the method in [62] first refor-
mulates the exact formulation (3.19) and then dualizes all constraints yielding a regularized
problem. The corresponding nonstandard semidefinite bounds are slightly weaker than the
usual ones, but can explicitly be computed by efficient methods of smooth optimization,
such as quasi-Newton methods. This approach was also applied to the max-cut problem
in [50] and outperformed the bundle approach in [72]. The latter is the foundation of the
current leading method for SRFLP by Hungerländer & Rendl [44]. We conclude this chapter
with a theoretical comparison of the presented methods when applied to large-scale SRFLP
instances.

4.1 A bundle method approach

Let E be the particular elliptope

E :=
{
X ∈ Rn∗×n∗ : diag(X) = e, X � 0

}
.

Since minimizing the objective function of (4.1) over the elliptope E is computational feasible
for even n = 100 by using an interior-point method, Hungerländer & Rendl [44] maintained
the constraintX ∈ E explicitly and handled all other constraints through Lagrangian duality,
i.e., by applying Lagrangian relaxation. For this purpose, consider the problem

zSDP = inf {〈C,X〉 : X ∈ E , A(X) ≤ a, B(X) = e} , (4.2)

where B(X) = e now only collects the 3-cycle equations (3.5) symbolically.
Hungerländer & Rendl [44] then lifted the linear constraints A(X) ≤ a and B(X) = e into
the objective function and defined the partial Lagrangian

L(X;λ, µ) := 〈C,X〉+ λ>(A(X)− a) + µ>(B(X)− e).

The associated dual function is given by

f(λ, µ) := inf
X∈E
L(X;λ, µ) = −a>λ− e>µ+ inf

X∈E

〈
C +A>(λ) + B>(µ), X

〉
. (4.3)

Practical Solution Methods based on Lagrangian Relaxation 35

It follows from weak duality that we have

f(λ, µ) ≤ zSDP

for all λ ≥ 0, µ. Hence, we obtain a valid lower bound for SRFLP by evaluating f at any
feasible point (λ, µ). Computing the strongest bound possible amounts to solving the dual
problem

sup
λ≥0, µ

f(λ, µ).

Since (SDP3) has strictly feasible points (see Section 3.3), strong duality holds and the
optimum of the dual problem is attained at some point (λ∗, µ∗):

f(λ∗, µ∗) = max
λ≥0, µ

f(λ, µ) = zSDP .

It is well-known that the function f is concave but nonsmooth. Therefore, Hungerländer
& Rendl [44] used the bundle method to minimize the convex function f ′ := −f . For a
current given feasible point (λ, µ), an iteration of the bundle method requires the function
value f ′(λ, µ) and a subgradient of f ′ at (λ, µ). Both are obtained by solving a semidefinite
program over the elliptope E , see (4.3). Whereas the feasible set of this problem always
remains the same, the objective function changes in every iteration.
Since including all inequalities A(X) ≤ a at the same time is still too expensive, only a
small subset I of inequalities is actually present. This subset I is adapted dynamically, i.e.,
nearly inactive inequalities with dual multipliers close to zero are dropped and new promising
inequalities are added. As a result, the set of constraints that are dualized and also f itself
will change from time to time. It can be shown that the iterates (λk, µk) in this dynamic
bundle method converge to an optimal solution, see [14]. However, the bundle method has a
weak asymptotic behavior. Hence, Hungerländer & Rendl [44] limited the number of bundle
method iterations to a few hundred. Thus, the obtained solution is only an approximation
to the optimal solution.

4.2 A regularized approach

We will now present in detail the motivation of our suggested approach for SRFLP. The generic
method presented in [62] also uses Lagrangian duality (or relaxation), but is quite different
from the approach of Hungerländer & Rendl [44] in some aspects. The main distinctions are
the usage of nonstandard semidefinite bounds through some kind of regularization and the
dualization of all involved constraints. This leads to theoretically weaker bounds, but also
to much cheaper function evaluations and a smooth optimization problem.
Note that adding the rank-one constraint rank(X) = 1 to (4.1) again yields an exact for-
mulation for SRFLP. The key idea is now to replace the rank-one constraint by the so-called
spherical constraint [61], yielding another exact formulation.

Proposition 4.2.1 ([61, Theorem 1])
Let X ∈ Sp be such that X � 0 and diag(X) = e. Then we have

‖X‖ ≤ p,

36 Practical Solution Methods based on Lagrangian Relaxation

and
rank(X) = 1 ⇐⇒ ‖X‖ = p.

Therefore, by adding the constraint ‖X‖2 = n2
∗ to the semidefinite relaxation (4.1), we obtain

the following exact formulation for SRFLP:

min 〈C,X〉
s.t. A(X) ≤ a

B(X) = e
X � 0
‖X‖2 = n2

∗.

(4.4)

Note that the whole nonconvexity of problem (4.4) is now concentrated in the single non-
convex quadratic equation ‖X‖2 = n2

∗ (see [62]).
We now dualize all constraints of problem (4.4). This yields the Lagrangian

L(X;λ, µ, Z, α) := 〈C,X〉+ λ>(A(X)− a) + µ>(B(X)− e) +
α

2

(
‖X‖2 − n2

∗
)
− 〈Z,X〉 ,

which is a function of the primal variable X ∈ Sn∗ and the dual variables (λ, µ, Z, α) ∈ D :=
RmI

+ × RmE × S+
n∗ × R. To simplify the notation, we introduce

c(λ, µ, α) := −a>λ− e>µ− α

2
n2
∗

C(λ, µ) := C +A>(λ) + B>(µ).

The associated concave dual function is then given by

f(λ, µ, Z, α) := inf
X∈Sn∗

L(X;λ, µ, Z, α)

= c(λ, µ, α) + inf
X∈Sn∗

{α
2
‖X‖2 + 〈C(λ, µ)− Z,X〉

}
.

(4.5)

By weak duality, f(λ, µ, Z, α) yields a lower bound for the optimal value of (4.4) for all
(λ, µ, Z, α) ∈ D, and hence, also for SRFLP. Again, we are interested in an approximate
solution of the dual problem and the corresponding dual bound, i.e., we want to solve

z′ := sup
(λ,µ,Z,α)∈D

f(λ, µ, Z, α). (4.6)

The practical usefulness and the tightness of the presented bounds depend on the sign of α.
Note that we get f(λ, µ, Z, α) = −∞ for α < 0. Therefore, only α ≥ 0 remains promising.
Consider now the special case α = 0. In this case, we obtain

f(λ, µ, Z, 0) =

{
−a>λ− e>µ, if C(λ, µ)− Z = 0

−∞, otherwise.

Since Z � 0, the dual problem (4.6) for α = 0 is equivalent to the usual semidefinite dual
problem (see [62])

sup −a>λ− e>µ
s.t. C +A(λ) + B(µ) = Z

Z � 0.

Practical Solution Methods based on Lagrangian Relaxation 37

Thus, we have z′ ≥ zSDP . This is not surprising, since we have followed the standard La-
grangian dual for semidefinite programming while also dualizing the additional constraint
‖X‖2 = n2

∗, and then setting the corresponding dual multiplier to zero. In fact, the usual
semidefinite bound zSDP is also an upper bound for the dual problem (4.6), i.e., z′ = zSDP .
To see this, let α > 0 be fixed, and consider the problem

inf 〈C,X〉 − α

2

(
n2
∗ − ‖X‖

2)
s.t. A(X) ≤ a

B(X) = e
X � 0.

(4.7)

Problem (4.7) is the primal semidefinite relaxation (4.1) with an additional term in the
objective function. Dualizing this problem exactly yields the dual problem (4.6) for α > 0
fixed. Since we have

α

2

(
n2
∗ − ‖X‖

2) ≥ 0 (4.8)

by Proposition 4.2.1, it follows that z′ ≤ zSDP , and hence, z′ = zSDP .
The inequality (4.8) reveals the spirit of a penalty approach, since any violation of the spheri-
cal constraint is penalized in the objective function. When the penalty parameter α vanishes,
we get the strongest bound. Hence, the dual problem (4.6) could actually be solved by using
(theoretically) efficient methods for semidefinite programming. This includes interior-point
methods or the approach by Hungerländer & Rendl [44], see Section 4.1. However, the latter
approach leads to a nonsmooth optimization problem to which the bundle method is applied.
Although the corresponding lower bounds are weaker, the case α > 0 yields much more
interesting computational properties than the case α = 0. Additionally, these bounds are
only slightly weaker if α > 0 is small enough. Since strong duality holds in our setting, one
can show that we can get arbitrarily tight bounds (see [62]), i.e.,

lim
α↘0

max
(λ,µ,Z,α)∈D

f(λ, µ, Z, α) = zSDP . (4.9)

4.2.1 Computing the bounds

We will now consider the case α > 0 in more detail. It turns out that we have an explicit
expression of the dual function f in this case. Moreover, adding the penalty term (4.8)
regularizes the dual problem (4.6) for α > 0 fixed, i.e., methods of smooth optimization can
be applied to it.

Theorem 4.2.2 ([62, Theorem 1])
Let (λ, µ, Z, α) ∈ D with α > 0 be given. Then the minimum of the Lagrangian
L(X;λ, µ, Z, α) is attained at

X∗ =
1

α
(Z − C (λ, µ)) ,

and we have
f (λ, µ, Z, α) = c(λ, µ, α)− 1

2α
‖Z − C(λ, µ)‖2 .

38 Practical Solution Methods based on Lagrangian Relaxation

Proof. Since α > 0, the Lagrangian, as a function of X, is strongly convex and differentiable.
Hence, its unique minimizer X∗ is given by

0
!

= ∇XL(X;λ, µ, Z, α) = αX + C(λ, µ)− Z

⇐⇒ X =
Z − C(λ, µ)

α
.

Thus, we get

f(λ, µ, Z, α) = L(X∗;λ, µ, Z, α)

= c(λ, µ, α) +
α

2

∥∥∥∥Z − C(λ, µ)

α

∥∥∥∥2

+

〈
C(λ, µ)− Z, Z − C(λ, µ)

α

〉
= c(λ, µ, α) +

α

2

1

α2
‖Z − C(λ, µ)‖2 − 1

α
‖C(λ, µ)− Z‖2

= c(λ, µ, α) +

(
1

2α
− 1

α

)
‖Z − C(λ, µ)‖2

= c(λ, µ, α)− 1

2α
‖Z − C(λ, µ)‖2 .

We also see that f(λ, µ, Z, α) = c(λ, µ, α) − 1
2α
‖Z − C(λ, µ)‖2 is differentiable at any

(λ, µ, Z, α) ∈ D for α > 0. The partial derivatives are given by (see [62])

∂λf(λ, µ, Z, α) =
1

α
A(Z − C(λ, µ))− a,

∂µf(λ, µ, Z, α) =
1

α
B(Z − C(λ, µ))− e.

However, for given dual variables (λ, µ, α) with α > 0, we also have to deal with the dual
variable Z � 0. Fortunately, we can explicitly maximize the dual function over Z in this
case. For this purpose, we introduce the simplified dual function [62]

f(λ, µ, α) := max
Z�0

f(λ, µ, Z, α) = max
Z�0

{
c(λ, µ, α)− 1

2α
‖Z − C(λ, µ)‖2

}
.

The optimal Z∗ is given by the uniquely defined solution of

min
Z�0
‖Z − C(λ, µ)‖2 ,

which is the projection of C(λ, µ) onto the cone of positive semidefinite matrices, i.e.,

Z∗ = C(λ, µ)+.

Due to (1.3), we obtain

Z∗ − C(λ, µ) = C(λ, µ)+ − C(λ, µ) = −C(λ, µ)−.

Practical Solution Methods based on Lagrangian Relaxation 39

Therefore, the minimizer of the Lagrangian L(X;λ, µ, Z, α) becomes

X∗ = −C(λ, µ)−
α

,

and the simplified dual function is given by

f(λ, µ, α) = c(λ, µ, α)− 1

2α
‖−C(λ, µ)−‖2

= c(λ, µ, α)− 1

2α
‖C(λ, µ)−‖2 .

(4.10)

Despite the projection onto the cone of negative semidefinite matrices, one can show that
f(λ, µ, α) is differentiable at any (λ, µ, α) with α > 0, and the partial derivatives are given
by (see [62])

∂λf(λ, µ, α) = − 1

α
A(C(λ, µ)−)− a,

∂µf(λ, µ, α) = − 1

α
B(C(λ, µ)−)− e.

(4.11)

4.2.2 The bounding procedure

We will now show how the above results can be used to compute tight semidefinite bounds for
SRFLP. We refer to [50–52] in which bounding procedures based on the presented bounds [62]
are proposed. Here, however, we only present the basic ideas of such a bounding procedure
and postpone our exact implementation for SRFLP to Section 5.3.
First, recall that we can get arbitrarily close to the usual semidefinite bound zSDP , if we take
α > 0 small enough and find appropriate dual variables λ ≥ 0 and µ, see (4.9). Second, one
can show that the bounds f(λ, µ, α) are monotonic with respect to α in the following sense.
For 0 < α ≤ α′, we have (see [62])

max
λ≥0, µ

f(λ, µ, α′) ≤ max
λ≥0, µ

f(λ, µ, α).

Therefore, α can be interpreted as a tightness parameter that dictates the quality of the
best possible lower bound with respect to the dual variables λ and µ. Choosing a smaller
value of α allows to compute stronger bounds. Third, as for the approach by Hungerländer &
Rendl [44], the set of inequalities is too large to be maintained as a whole, even for medium-
sized problems. Hence, we restrict ourselves to a subset I of inequalities which we update
from time to time. We denote the associated dual function by fI(λ, µ, α).
For α > 0 fixed, the differentiability of fI motivates to use the partial derivatives (4.11) to
find approximately optimal dual multipliers λ and µ. For this, consider the following simpler
optimization problem for α > 0 and I fixed [62]:

max
λ≥0, µ

fαI (λ, µ) := max
λ≥0, µ

fI(λ, µ, α). (4.12)

Problem (4.12) is a convex optimization problem (or equivalent to), since the feasible set
is convex and the objective is to maximize a concave function over this set. Moreover, the

40 Practical Solution Methods based on Lagrangian Relaxation

objective function fαI is differentiable and the partial derivatives are given in (4.11). Hence,
any efficient method of nonlinear optimization that can handle the box constraints λ ≥ 0
can be used to solve (4.12) approximately. Although the so-called second-order semismooth
Newton method could be used for this purpose (see [52]), it is suggested in [62] to use a
quasi-Newton method, which easily can handle any number of constraints. In particular, the
limited-memory quasi-Newton code L-BFGS-B [63,86] is used in [50–52], due to its simplicity
and robustness. We will also use the L-BFGS-B solver in our experiments.
Throughout its optimization process, the quasi-Newton method requires many evaluations
of fαI and its gradient for given α, (λ, µ) and I. As the matrix C(λ, µ) can efficiently be
constructed, the by far most expensive part is the projection onto the cone of negative
semidefinite matrices. This can be done by using the explicit formula (1.2), i.e., by computing
a partial eigendecomposition of the matrix C(λ, µ). In order to do so, the routine DSYEVR
of the Intel Math Kernel Library (MKL) is called in [50–52]. This routine requires O(p3)
arithmetic operations for a matrix of dimension p, i.e., the effort is O(n6) for a SRFLP
instance with n facilities.
Although the quality of the bounds is controlled by the tightness parameter α and the
mentioned routines are known to be efficient and robust in general, we should not take α
unnecessarily small. The expressions of the simplified dual function (4.10) and its gradient
(4.11) indicate that problem (4.12) becomes ill-conditioned if α tends to zero. Since the
gradient has a very sharp behavior for very small values of α, we have to expect a huge
number of L-BFGS-B iterations (see [62]).
To overcome this complication and to get a good ratio of tightness to computing time, the
authors in [50–52] use an adaptive approach, in which α starts at a fairly large value and
is then iteratively reduced if necessary. An outline of their iterative bounding procedure is
shown in Algorithm 1. For a given subset Ik of inequalities and values αk > 0, εk > 0 in
iteration k, the L-BFGS-B solver is warm-started from previous dual variables (λk−1, µk−1)
to compute (λk, µk) such that the primal variable

Xk := −(C +AIk(λk) + B(µk))−
αk

satisfies the termination criterion

max
{∥∥[A(Xk)− a]−

∥∥
∞ , ‖B(Xk)− e‖∞

}
< εk.

The new set of inequalities Ik+1 is then constructed from Ik by adding inequalities that are
violated by the current iterate Xk, and by removing inequalities that are not active with
respect to their corresponding dual variable λk. For iteration k+1, αk+1 and εk+1 are chosen
such that αk+1 ≤ αk and εk+1 ≤ εk. One can show (see [52]) that under mild assumptions,
the sequence of generated lower bounds fαkIk (λk, µk) by Algorithm 1 converges to the usual
semidefinite bound zSDP , if αk → 0, εk → 0 and Ik → I∗, where I∗ contains all inequalities
that are active at the optimum.

Practical Solution Methods based on Lagrangian Relaxation 41

Algorithm 1: Outline of the bounding procedure
Input: α > 0, ε > 0
Output: Sequence of lower bounds fIk(λk, µk, αk)
Initialization: λ0 ← 0, µ0 ← 0, α1 ← α, ε1 ← ε, I1 ← ∅
for k = 1, 2, . . . , do

Use the quasi-Newton code L-BFGS-B, warm-started from (λk−1, µk−1), to
maximize fαkIk , i.e., compute (λk, µk) such that

max
{∥∥[AIk(Xk)− a]+

∥∥
∞ , ‖B(Xk)− e‖∞

}
< εk,

where

Xk ← −
(C +AIk(λk) + B(µk))−

αk
.

Output the lower bound fIk(λk, µk, αk).
Choose an appropriate set of inequalities Ik+1 with the help of Xk and λk;
initialize the multipliers of new inequalities to zero.
Choose αk+1 ≤ αk and εk+1 ≤ εk.

4.3 Comparison of the methods

In this section, we want to point out some general similarities and differences between the ap-
proach suggested by Hungerländer & Rendl [44] (see Section 4.1) and our proposed approach
for SRFLP (see Section 4.2). We mainly focus on theoretical properties such as hypothetical
accuracy, running time and memory requirements for a single function evaluation or scala-
bility with respect to large-scale SRFLP instances. For an in-depth numerical comparison, we
refer to Chapter 6.
A first similarity is that both methods can handle many constraints due to the application
of Lagrangian relaxation. This allows the usage of (SDP1) as the underlying basic semidef-
inite relaxation, whereas only (SDP0) could be used for large instances when interior-point
methods are applied directly (see Section 3.3). Additionally, many inequalities can be added
in the solution process to strengthen the bound. Of course, these inequalities are not lim-
ited to those involved in (SDP3). The possibility of handling a large set of inequalities also
encourages us to look for further valid inequalities. We address this topic in Chapter 5.
The possibility to handle a lot of inequalities also involves some hidden costs. While interior-
point methods have a very high accuracy, this looks a bit different with the presented ap-
proaches based on Lagrangian duality. It is clear that it is probably not worthwhile to
improve the semidefinite relaxations only theoretically by adding more inequalities. The
practical value of any relaxation also depends on its practical feasibility. A theoretically
weaker relaxation may perform better in practice, if it can be solved with higher accuracy
in a smaller amount of time.
From a theoretical and algorithmic point of view, this is a major difference between the

42 Practical Solution Methods based on Lagrangian Relaxation

approach by Hungerländer & Rendl [43,44] and our proposed approach. The bundle method
approach is more direct in the sense that no penalty term is used, i.e., it tries to approximate
the usual semidefinite bound more directly. In contrast, our proposed approach depends on a
tightness parameter and solves several different optimization problems, for which the optimal
value of these problems comes closer and closer to the usual semidefinite bound.
The accuracy, and especially the needed running time to achieve a given accuracy, heavily
depends on the optimization algorithms which are used to approximately solve the occurring
optimization problems. Hungerländer & Rendl [44] work with a nonsmooth optimization
problem which is solved by a specific version of the bundle method. Therefore, this approach
only uses a first-order method which typically has a weak convergence behavior. In general,
we should expect to get an approximate solution having a small relative error. Unfortunately,
small inaccuracies may prevent a successful solution of poorly scaled instances, even if the
semidefinite relaxation is actually sufficient. If the data of a given instance has relatively
large numbers, a small relative error may not be sufficient to prove global optimality, since
the calculated lower bound must have an absolute error of less than 1. In this case, more
accurate methods are clearly favored.
Our suggested approach leads to a sequence of smooth optimization problems (see 4.12),
for which explicit expressions of the partial derivatives are available. These optimization
problems are solved with the quasi-Newton code L-BFGS-B [63, 86]. On the one hand, this
quasi-Newton method is more efficient and has a better convergence behavior. It lies some-
where between first and second-order method (see [52]) and can compute more accurate
solutions in less iterations than the bundle method. On the other hand, the tightness of the
bounds depends on the penalty parameter α. As already mentioned, by taking α sufficiently
small, we can get arbitrarily close to the usual semidefinite bound. Nonetheless, we have to
take care of the sharp behavior of the gradient for very small values of α. However, even if
this results in more iterations, our suggested approach still has a higher potential to compute
more precise bounds than the bundle method, if necessary.
In addition to the more efficient quasi-Newton method, our approach has a much simpler dual
function than the bundle approach by Hungerländer & Rendl [44]. The explicit expression of
the dual function (4.10) and the use of robust and highly optimized linear algebra routines
allow to perform much more adaptations of the dual variables in the same period of time.
Denoting the number of facilities by n, a semidefinite program of dimension O(n2) with
O(n2) constraints must be solved for a function and subgradient evaluation of the bundle
method. Whereas with our approach, only a matrix of the same dimension has to be projected
onto the cone of negative semidefinite matrices. To illustrate the different computational
efforts, Table 4.1 compares the average running times for the respective function evaluations
for n ∈ {30, 50, 70, 100}. The running times for the bundle approach are reported in [44].
Therein, a standard interior-point method on an Intel Xeon 5160 processor with 3 GHz is used
to solve the semidefinite programs. Our results are carried out on an Intel Xeon E5-2640V4
processor with 2.4 GHz, using one or four cores respectively. We call the routine DSYEVR of
the Intel Math Kernel Library (MKL) to perform the eigendecomposition (see Section 4.2).
Independently from the different hardware, the conclusion is obvious. The penalty method
computes the function and gradient evaluations much quicker. Using only one core, about

Practical Solution Methods based on Lagrangian Relaxation 43

n BM [44] PM (one core) PM (four cores)

30 3 0.017 0.012
50 40 0.262 0.101
70 500 1.721 0.572
100 3000 19.282 6.986

Table 4.1: Average running times (in seconds) to perform a single function and (sub-)gradient
evaluation for the bundle method (BM) and the penalty method (PM).

150 evaluations can be done while the bundle method accomplishes only one evaluation in
the same period of time. Note that this is true for every value of n. Additionally, we can
see that the computation times of the penalty method can be greatly reduced by using
modern CPU architectures with many cores. In comparison to the expensive solution of
the semidefinite program in the bundle approach, the computational effort for optimizing
the dual variables with the bundle method is negligible. The quasi-Newton solver L-BFGS-B
requires between O(mn′) and O(m2n′) arithmetic operations for a single iteration, where m
denotes the predefined number of memory corrections and n′ is the number of dual variables
[63,86]. Hence, for fixed m, the computational effort is linear in the number of dual variables.
Ironically, the computational effort reaches its maximum, when all bounded variables are at
their bounds, i.e., all inequalities are inactive. This suggests to avoid the excessive inclusion of
too many unnecessary inequalities, at least for relatively small instances where the projection
onto the cone of negative semidefinite matrices can be performed very efficiently.
Another property in favor of the penalty approach is that the quasi-Newton solver L-BFGS-B
can easily be warm-started from previous known dual variables. Its cheap iterations and the
efficient implemented detection of free variables (see [63, 86]) make it possible to determine
inactive and useful inequalities very quickly. This encourages us to update the current set
of inequalities much more frequently than with the bundle approach. Especially on very
large instances, say n ≥ 70, the bundle approach has some severe limitations to find a
suitable selection of inequalities. Due to the very high cost of function evaluations and the
weak convergence behavior of the bundle method, the separation routine can effectively be
executed very rarely compared to the penalty approach. Therefore, we expect the penalty
approach to perform better, when it comes to solving very large instances. Additionally, this
opens the door to to tighten the relaxations even further by considering more inequalities,
since the approach seems to have the potential of being both fast and accurate (if necessary).
Now consider the memory requirements of the two approaches. Clearly, both approaches
require at least O(n3) memory space for the dual variables, linearly increasing with the
number of present inequalities. For a fixed number m of memory corrections, the L-BFGS-B
solver only needs memory space linear in the number of dual variables involving a small
constant. The exact requirement for the bundle method itself depends on how the occurring
quadratic subproblems are solved. However, it is much higher in any case. An evaluation of
the dual function requires O(n4) memory space for both approaches. However, solving the
semidefinite program with an interior-point method incorporates a much higher constant
factor than the projection onto the cone of negative semidefinite matrices. Basically, the
latter needs memory space twice as much as for storing the primal variable X. Hence the

44 Practical Solution Methods based on Lagrangian Relaxation

Property IPM BM PM

accuracy (theoretical) very high low high
can handle many constraints no yes yes
effort for a single function evaluation very high high low
memory requirements high low very low
yields lower bounds yes yes yes
direct access to primal variable X yes yes yes
subset of inequalities can be updated
frequently for large-scale instances

no no yes

Table 4.2: Comparison of properties for different solution approaches for the semidefinite
relaxations for SRFLP: interior-point method (IPM) approach, bundle method (BM) approach
and penalty method (PM) approach.

overall memory requirement for the penalty method is very efficient, and increases linearly
with the number of inequalities.
All in all, both methods require relatively few memory space, but the penalty approach is
more modest than the bundle approach. The biggest distinction is definitely caused by the
different running times for an evaluation of the dual function. The bundle approach seems to
spend substantially more time (by a huge constant factor) on a single evaluation. In addition
to the higher number of evaluations, the quasi-Newton method of the penalty approach is
theoretically superior to the bundle method in terms of accuracy and convergence behavior.
In view of solving very large SRFLP instances, it is more than questionable that the bundle
method can achieve the desired accuracy in reasonable time, due to the high cost of function
evaluations and the huge amount of inequalities. The penalty approach presumably offers
the possibility to find reasonable good subsets of inequalities in much less time. We have
summarized some important properties of the discussed approaches in Table 4.2.

Chapter 5

A Novel Approach for SRFLP

In this chapter, we present our suggested approach for SRFLP in more detail. In Section 5.1, we
investigate how the existing semidefinite relaxations can be improved. For this purpose, we
will consider certain classes of facet defining inequalities for the cut polytope PC . By selecting
a suitable subset of them, we introduce a new strengthened semidefinite relaxation for SRFLP.
This relaxation yields much stronger lower bounds when compared to prior semidefinite
relaxations such as (SDP3) by Hungerländer & Rendl [44], especially for large-scale instances.
In addition, it has a positive effect on the running time of our proposed solution method, i.e.,
the stronger relaxation with more constraints leads to shorter computing times. Additionally,
in Section 5.1 we propose two heuristic separation routines for huge classes of inequalities
that cannot be enumerated explicitly.
In Section 5.2, we discuss and present several primal heuristics that use (approximate) so-
lutions of the semidefinite relaxations to compute good feasible layouts. Moreover, a concise
overview of our practical implementation for solving our proposed relaxations is given in
Section 5.3. Since this only yields lower bounds for SRFLP, Section 5.4 is concerned with the
embedding of our semidefinite relaxations into an exact branch-and-bound algorithm. For
this, we illustrate how an efficient branch-and-bound approach should be designed and we
also propose two branching rules which are particularly suited for SRFLP.

5.1 A considerably improved relaxation

Our discussion in Section 4.3 reveals that our suggested solution method for the semidefinite
relaxations (see Section 4.2) is well-suited to deal with a huge number of constraints. It is very
efficient in finding a good subset of inequalities quickly while also maintaining reasonable
accuracy. On the one hand, we aim to find a much tighter semidefinite relaxation than (SDP3)
that is computational feasible, i.e., it should contain no more than O(n6) constraints. On the
other hand, we also do not refrain from considering larger classes of inequalities for which
we propose heuristics to separate them heuristically. To the best of our knowledge, such a
semidefinite approach has never been applied to SRFLP (or any quadratic ordering problem
in general) before, see also [41,43].

45

46 A Novel Approach for SRFLP

First steps towards a tighter semidefinite relaxation were done in [41] for the general quadratic
ordering problem. Similar to (3.28), the idea of Lovász and Schrijver [59] can be applied to
pairs of the 3-cycle-inequalities (3.4). This yields the inequalities

−1− yij − yjk + yik ≤ ylm + ymo − ylo + yij,lm + yij,mo − yij,lo + yjk,lm + yjk,mo

− yjk,lo − yik,lm − yik,mo + yik,lo ≤ 1 + yij + yjk − yik,
−1 + yij + yjk − yik ≤ ylm + ymo − ylo − yij,lm − yij,mo + yij,lo − yjk,lm − yjk,mo

+ yjk,lo + yik,lm + yik,mo − yik,lo ≤ 1− yij − yjk + yik,

(5.1)

for all 1 ≤ i < j < k ≤ n, 1 ≤ l < m < o ≤ n. By using PORTA [18] to compute
the complete outer description of PLQO in low dimensions, it was shown in [41] that some
of these ≈ n6

9
constraints are indeed facets of PLQO for n = 4. However, it remains an

open question whether the Lovász-Schrijver-cuts (3.28) and (5.1) are facet defining for any
linear quadratic ordering polytope in higher dimension [41]. Other valid inequalities for
PLQO can be obtained by inspecting the betweenness polytope PBTW . All facets of PBTW
for n ∈ {3, 4, 5} were computed in [66] by using PORTA [18]. These facets can be rewritten as
quadratic constraints in bivalent ordering variables (3.1) by using the transformations (3.2).
It is suggested in [41] to add a subset of the resulting O(n5) constraints alongside (5.1) to
the semidefinite relaxation (SDP3), since preliminary experiments would show that this pays
off for all kinds of betweenness problems which also includes SRFLP.
However, we do not recommend to do this for SRFLP, at least when our proposed solution
method is used. First, we do not observe any noteworthy improvement on the lower bounds
when the Lovász-Schrijver-cuts (3.28) or (5.1) are used. They even have a negative impact
on the required number of function evaluations which increases the overall computing time.
Second, the inequalities that are derived from the facets of PBTW for n = 5 sometimes
marginally improve the lower bounds, but always significantly increase the running times.
Additionally, their inclusion is never sufficient to solve a SRFLP instance when the sole set of
triangle inequalities is insufficient. We observed that when these inequalities are added in the
bounding procedure, they are then almost often quickly removed, since their dual multipliers
stay near to zero. This hints at a very unstable behavior. As a result, we completely omit
any Lovász-Schrijver-cuts and facets of the betweenness polytope PBTW in low dimensions
in our implementation. In the following, we present a much better alternative which also has
a close connection to the betweenness polytope PBTW .

5.1.1 Facets of the cut polytope

As already done in Section 3.2 by introducing the triangle inequalities (3.22), we further
exploit the structure of the underlying cut polytope PC . The facial structure of PC has
been studied extensively in the literature, e.g., see [21]. A remarkably general class of valid
inequalities, the so-called gap inequalities [56], is given by〈

bb>, X
〉
≥ B (5.2)

for any b ∈ Zn with B := min
{(
b>x
)2

: x ∈ {−1, 1}n
}
> 0. Inequalities for which the right

hand side B equals to one, are called hypermetric inequalities. If b ∈ {−1, 0, 1}n and b has

A Novel Approach for SRFLP 47

an odd number of nonzero entries, we obtain the very important class of clique inequalities.
In the following, we introduce certain classes of valid inequalities for any X ∈ PC which can
be derived from (5.2). Since PLQO ⊂ PC , these inequalities can also be used to strengthen
the semidefinite relaxation (SDP3) which is formulated over PLQO.
For a subset of three rows (or columns) {p1, p2, p3} of X, we have the inequalities∑

1≤i<j≤3

δiδjXpi,pj ≥ −1,

where δk ∈ {−1, 1}, k = 1, 2, 3. Note that this yields four different inequalities for each choice
of {p1, p2, p3} and these are exactly the triangle inequalities (3.22). For five pairs {p1, . . . , p5}
and all choices of δk ∈ {−1, 1}, k = 1, . . . , 5, we obtain the 16 following pentagonal inequali-
ties : ∑

1≤i<j≤5

δiδjXpi,pj ≥ −2.

Analogously, for seven pairs {p1, . . . , p7} and all choices of δk ∈ {−1, 1}, k = 1, . . . , 7, we get
the 64 inequalities ∑

1≤i<j≤7

δiδjXpi,pj ≥ −3,

which we call heptagonal inequalities for convenience. Moreover, we also consider the hyper-
metric hexagonal inequalities. They are given by

2
6∑
i=2

δ1δiXp1,pi +
∑

2≤i<j≤6

δiδjXpi,pj ≥ −4,

where δk ∈ {−1, 1}, k = 1, . . . , 6, and p1, . . . , p6 is any 6-tuple of different pairs.
There are some theoretical and computational results indicating that the triangle, pentag-
onal, hexagonal and heptagonal inequalities are by far the most attractive inequalities for
semidefinite max-cut relaxations, see e.g. [28]. For n ∈ {3, 4}, all facets of PC are given by
the triangle inequalities. For n = 5, all facets are induced by the triangle or pentagonal
inequalities, and also the hexagonal inequalities for n = 6. For n ≥ 7, the structure and
number of facet classes are more complex, but always include the heptagonal inequalities
beside all other mentioned inequalities. Additionally, it is most likely that the above facets
have the shortest distance to the barycenter of PC in any dimension [21].
Some indication why the basic semidefinite relaxation (SDP1) and especially (SDP2) already
yield excellent lower bounds for SRFLP is given in [8]. It can be shown that any solution of
(SDP1) for a SRFLP instance with n facilities automatically satisfies 4

(
n
3

)
triangle inequalities.

Moreover, any solution of (SDP2) automatically satisfies 90
(
n
4

)
pentagonal inequalities and

192
(
n
4

)
hexagonal inequalities. However, it is obvious that we cannot include all pentagonal,

hexagonal and heptagonal inequalities in our semidefinite relaxations, since there are already
16
((n2)+1

5

)
≈ 1

240
n10 pentagonal inequalities. To obtain a more economical approach, we choose

a suitable subset of only O(n6) pentagonal inequalities which can be enumerated explicitly,
and separate the rest heuristically.

48 A Novel Approach for SRFLP

For this purpose, reconsider the betweenness approach in Section 2.3 and the exponential
class of inequalities (2.16). It is common knowledge that these inequalities correspond to
clique inequalities of the cut polytope (see e.g. [7]). For β = 4 we obtain a subset of the
triangle inequalities (see the proof Proposition 3.2.1), for β = 6 we obtain a subset of the
pentagonal inequalities and so on. Since it was proven that the inequalities (2.16) always
induce facets of PBTW (see [76]), it is a promising idea to include them in our semidefinite
relaxations. For this, consider the particular case β = 6. Suppose that we are given any
R = {i, j, k, l,m, r} ⊆ [n] and any partition (S, T) of R \ {r} with |S| = 3. Using the
transformations (3.2), we then see that the corresponding inequality (2.16) is exactly a
pentagonal inequality on the pairs (i, r), (j, r), (k, r), (l, r), (m, r). Up to symmetry, each
choice of the partition (S, T) yields a pentagonal inequality on the above pairs but with
different signs. Note that we only get 10 of the 16 different types of pentagonal inequalities,
which is due to the restriction |S| = 3. Omitting this restriction yields all 16 types, but
some of them do not define a facet of PBTW . However, our results show that all 16 types are
worthy in practice.
Interpreting the pairs (i, r), (j, r), (k, r), (l, r), (m, r) as the edge set of an undirected graph
yields a star with the six vertices {i, j, k, l,m, r} and the center vertex r. Due to this prop-
erty, we call pentagonal inequalities with the above structure starlike pentagonal inequalities.
Each subset of [n] with six facilities yields six different stars which again give 16 different
starlike pentagonal inequalities each. Hence, their total number is 96

(
n
6

)
which is computa-

tional feasible. With the notation in Section 3.2, the foundation of our proposed semidefinite
relaxations is then given by

min 〈C, Y 〉+K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k,

diag(Y) = e,

Y ∈M, (SDP4)
Y ∈ P∗,
Y � 0,

where
P∗ :=

{
Y ∈ R(n2)×(n2) : Y satisfies all starlike pentagonal inequalities

}
.

Analogous to Proposition 3.2.1, we have the following result.

Proposition 5.1.1
(SDP4) is at least as strong as the linear relaxation of model (BTW) enhanced by the cutting
planes (2.16) with β = 6.

Note that the starlike pentagonal inequalities are only a subset of all pentagonal inequalities
that involve exactly six different facilities. An obvious way to tighten (SDP4) even further
would be to include all missing pentagonal inequalities of the latter class, leading again
to a relaxation with only O(n6) constraints. However, their number involves an enormous
constant factor which makes them unappealing in practice, especially for smaller instances.
To demonstrate this, Table 5.1 lists the number of triangle inequalities and various subclasses

A Novel Approach for SRFLP 49

pentagonal inequalities
n triangle inequalities starlike exactly 5 facilities exactly 6 facilities

20 4,572,540 3,720,960 88,558,848 1,185,125,760
40 316,367,480 368,484,480 3,758,541,696 117,362,306,880
60 3,696,820,820 4,806,130,560 31,196,156,544 1,530,752,583,360
80 21,036,328,560 28,848,019,200 137,316,571,392 9,188,094,115,200
100 80,858,246,700 114,437,030,400 430,042,314,240 36,448,194,182,400

Table 5.1: Number of triangle inequalities, starlike pentagonal inequalities, pentagonal in-
equalities with exactly five facilities and pentagonal inequalities with exactly six facilities for
n ∈ {20, 40, 60, 80, 100}.

of pentagonal inequalities for different values of n. We can see that the number of starlike
pentagonal inequalities is always comparable to the number of triangle inequalities. Hence,
their inclusion does not increase the running time of exact separation that much. The number
of pentagonal inequalities with exactly five and particularly six facilities are much higher.
Therefore, they should only be separated very rarely, if at all. Our tests indicate that their
usage is not justified with respect to the running time, since their impact on the lower bound
is quite small. Another idea for a promising subclass of pentagonal inequalities is to extend
the 3-cycle-equations (3.5) with two additional pairs. Although this yields O(n7) constraints,
their number is still considerably smaller than those of pentagonal inequalities with exactly
six facilities.

5.1.2 Heuristic separation

So far, we have only considered types of inequalities that can be separated exactly in rea-
sonable time by enumeration. With this in mind, (SDP4) yields excellent lower bounds and
is a great backbone for our semidefinite relaxations, but it can still be improved by other
pentagonal, hexagonal or heptagonal inequalities. Since the separation of clique inequalities
(or hypermetric inequalities in general) is NP-hard [21], we have to use heuristic procedures
to separate them. Typically, these procedures would start with suitable choices of triangle
inequalities and then add further pairs to them [36]. Such an approach is suggested in [41]
for the quadratic ordering problem. It consists of determining a set of O(n3) (almost) vio-
lated triangle inequalities which is then extended to pentagonal inequalities by enumeration.
Hence, the overall effort is O(n7). Clearly, choosing only O(n2) triangle inequalities reduces
the effort to O(n6). There are different reasons why this approach is not a great idea in our
setting.
Note that all types of inequalities have different importance, triangle inequalities are the
most important ones, pentagonal inequalities are second and so on. That is why we restrict
ourselves to triangle, pentagonal, hexagonal and heptagonal inequalities only, although there
are much more known facets of the cut polytope. Especially for inequalities other than
triangle inequalities, we want to find and include only the most-violated ones. Unfortunately,
the proposed idea does a poor job in finding these. First, notice that it is not easy to transfer
the idea to hexagonal or heptagonal inequalities. We have tested a lot of strategies that

50 A Novel Approach for SRFLP

are mixtures of choosing pairs from already present inequalities, picking random pairs and
enumerating the remaining ones. Overall, we observed that this kind of approach does not
lead to satisfying results. Second, our proposed bounding procedure (see Section 4.2) is
designed to solve the occurring subproblems only approximately. Therefore, the iterates Xk

typically violate a huge number of constraints, even those which are already present. It may
happen that the mentioned heuristic produces the same pentagonal inequalities again and
again. Hence, we do not find good inequalities if we only use the structure of already included
inequalities.
We guess that the starlike pentagonal inequalities in addition to the triangle inequalities
already greatly ensure the structural properties of the underlying problem. Therefore, we
want our heuristics to be a bit more generic, i.e., they should fulfill the following conditions:

• yielding a sampling of all inequalities,

• finding many strongly violated inequalities,

• returning different inequalities on each run.

To achieve this, we propose two very simple randomized heuristics. They yield excellent
results and their running time can be controlled by a given time limit. This makes them easy
to use for different problem sizes and higher time limits should give more promising results.
We state them here in terms of pentagonal inequalities, but they can also be used for other
types of inequalities. The first heuristic consists of the following two steps as long as the
time limit is not reached:

1. Randomly divide the whole set of pairs into chunks of n
2
pairs.

2. For each chunk of pairs, enumerate and separate all types of pentagonal inequalities
on all pairs in it.

This simple heuristic clearly finds different inequalities on each run and pays particularly
attention to the first condition, i.e., it is a kind of sampling algorithm. Compared to the
separation of triangle and starlike pentagonal inequalities, it can be run hundreds of times.
The second heuristic is especially concerned with finding strongly violated inequalities. It
implements a 1-opt local search algorithm. For each set of five different pairs {p1, . . . , p5},
we assign the function value

f ({p1, . . . , p5}) = min
δk∈{−1,1}

{ ∑
1≤i<j≤5

δiδjXpi,pj

}
to it. We define the neighborhood of {p1, . . . , p5} as the set of pairs that differ in exactly one
pair. The second heuristic then consists of the following two steps:

1. Randomly choose five different pairs {p1, . . . , p5}.

2. Starting from {p1, . . . , p5}, find a set of pairs which is locally optimal with respect to f
and separate all types of pentagonal inequalities of all occurring neighbors during the
execution.

A Novel Approach for SRFLP 51

The computational cost of this heuristic is not as high as one may think, and we typically
restart it several thousand times. Note that a similar idea was independently proposed in [31].
We remark that the second heuristic should be implemented as randomly as possible, i.e.,
the neighborhood should be examined in random order. We can observe much better results
this way when compared to a fixed order.
In all of our computational results in Chapter 6, we use the semidefinite relaxation (SDP4) as
the foundation and separate all inequalities therein by enumeration. We also show how the
lower bounds can be improved by considering other pentagonal, hexagonal and heptagonal
inequalities, separated by our heuristics. We connect the time limits for these heuristics to
the time needed to separate all triangle and starlike pentagonal inequalities.

5.2 Primal heuristics

In this section, we address the important task of finding good feasible layouts, i.e., finding
upper bounds for SRFLP. In the best case, our lower bounds can then be used to prove the
optimality of a known solution. Beside strong dual bounds, primal heuristics are also an essen-
tial component for the efficiency of any branch-and-bound algorithm based an mathematical
programming. Many heuristics and metaheuristics for SRFLP were proposed in the literature
in recent years. These include swarm algorithms such as ant colony optimization [30,80] and
particle swarm optimization [75], local search metaheuristics such as simulated annealing [70],
tabu search [47,74] and other variants [2, 46,69], population based algorithms [13,20,48,49]
and more problem dependent heuristics [22, 53, 54, 67]. Quite interestingly, these heuristics
were often only tested on instances with n ≤ 110, which seems to be very low for heuris-
tic approaches, but demonstrates the hardness of SRFLP. Since our main goal is to solve
as largest instances as possible to optimality, we will only concentrate on heuristics which
exploit knowledge of our semidefinite relaxations.
For this purpose, we assume that we are given a semidefinite matrix X which arises in any
solution method for any semidefinite relaxation for SRFLP. We neither require that X is an
optimal solution of the relaxation, nor that X is feasible for it. The latter will happen when
we use any approach based on Lagrangian duality. The semidefinite matrices Xk, which
arise during our iterative bounding procedure, even may violate the box constraints of the
elliptope. Anyhow, we expect a better performance of our heuristics when X can be seen as
an approximate solution of the relaxation. We now aim to construct a feasible ordering, i.e.,
a permutation, or a feasible vector of ordering variables which represents such an ordering.
A first simple idea, assuming that we work with the linear quadratic ordering polytope,
would be to extract the first column of X, yielding a vector of (fractional) ordering variables
x. We can then apply any rounding strategy to obtain a ±1-vector. If all entries of x are
in [−1, 1], we can also define x̃k = xk+e

2
and interpret the resulting entries as probabilities

that the corresponding ordering variable will take the value +1. If X is very close to the
optimal solution of SRFLP, this idea may be absolutely sufficient and works well for small
instances. However, there are some points of criticism for this approach. First, we also want
to obtain good feasible orderings for quite large instances where X can be farther afield
from the optimal solution. Second, the constructed ±1-vector in general does not satisfy

52 A Novel Approach for SRFLP

the 3-cycle-equations (3.5), i.e., it does not represent a valid ordering in this case. Third, in
view of the fact that X (if feasible for the relaxation) is a correlation matrix, this approach
does not exploit the global connection of all entries due to the semidefiniteness of X. We are
more interested in heuristics that are more reliable and exploit all information hidden in the
structure of X.

5.2.1 SDP-based heuristics

A more advanced heuristic was proposed in [6] and was later improved in [9]. It exploits the
specific bijection constructed in Section 3.1 between the set of all ±1-vectors representing
valid orderings and the set of all permutations. It also yields many heuristic candidate solu-
tions, more precisely, one for each pair ij of facilities. Let xij,kl be the entries of X and let
be ij any row of X. Then consider the n values

ωijk =
1

2

n+ 1 +
∑

`∈[n], k 6=l

xij,kl

 , k ∈ [n]. (5.3)

Due to the bijection, the values ωijk are all distinct and define a permutation of [n], if X is
rank-one [9]. However, rank(X) > 1 will be more likely the case. Nonetheless, a permutation
can be obtained by sorting the values ωijk in either increasing or decreasing order. Due to
symmetry, the objective value is the same in both cases. Applying this idea to each row
yields

(
n
2

)
possibly different layouts.

An advantage of this heuristic is its simplicity. Given the matrix X, the computational effort
is only O(n2) per row and thus O(n4) in total. Moreover, it always yields feasible layouts.
Since the dominant part of the solution of any semidefinite relaxations is at least O(n6)
for each approach, we could spent much more time on heuristics. Hence, a disadvantage
is that the heuristic is deterministic and must be modified in some way to produce more
different solutions. The rigidity could be relaxed by introducing some kind of random biases
in the entries of X. However, the heuristic does not fully exploit the structure of X, since it
considers each row isolated from all others. For this reason, we have not implemented this
heuristic directly, but borrow the idea of sorting some values from it.
We use a similar approach to that of [41, 43, 44] by taking advantage of the connection to
the max-cut problem. Since our semidefinite relaxations correspond to relaxations of the
max-cut problem with additional constraints (3.5), it seems natural to adapt the famous
hyperplane rounding heuristic by Goemans and Williamson [26, 27], which is depicted in
Algorithm 2. The most expensive part of this randomized rounding procedure is to compute
the Cholesky factorization X = WW> in step 1. For a SRFLP instance with n facilities,
this requires O(n6) arithmetic operations. Compared to the lower bound computation, this
is still negligible. Actually, if we use the proposed bounding procedure (see Section 4.2),
the Cholesky factorization need not to be computed, since it is already available due to
the eigendecomposition of X which is required for each function evaluation [52]. Step 2
can be done in O(n2) and step 3 in O(n4). Hence, applying the heuristic is overall relatively
inexpensive and we can repeat steps 2 and 3 for many different (O(n2)) random unit vectors.

A Novel Approach for SRFLP 53

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: A positive semidefinite matrix X ∈ Rp×p

Output: A vector x ∈ {−1, 1}p

Compute W = (w1, . . . , wp) ∈ Rp×p such that X = WW> (Cholesky factorization)
Generate a random vector h ∈ Rp on the unit sphere
for k = 1 to p do

xi ←

{
+1, if h>wi ≥ 0

−1, otherwise
end
return x

5.2.2 Repair strategies

The hyperplane rounding algorithm obviously exploits the semidefiniteness of X and offers
a fairly high diversity of candidate solutions vectors. However, it still suffers from the fact
that it may compute ±1-vectors that violate the 3-cycle-equations (3.5), i.e., it yields no
feasible orderings in general. To make it work better in practice, we need a kind of repair
strategy which converts any given ±1-vector into a feasible one. This is done in [41, 43, 44]
by an iterative procedure. Therein, the sign of exactly one of the three ordering variables
in all violated 3-cycle-equations is flipped until the ordering variables satisfy all equations.
Although the success of this approach might by questionable in theory, it is reported in
[41, 43, 44] to work very well in practice and outperforms the deterministic heuristic based
on the values (5.3).
However, we use some other repair strategies which a more reliable in our opinion and also
yield excellent results. Our first strategy, shown in Algorithm 3, is designed to change as
few signs of the ordering variables as possible and always outputs a feasible ordering. It is
closely related to the idea in [6, 9] based on the values (5.3). The motivation is the same: if
the Goemans-Williamson heuristic yields xij = 1 for a particular ordering variable, it is more
likely that j should be placed on the right of i with respect to all other ordering variables
(or on the left due to symmetry).
This repair strategy has only a computational effort of O(n2) and presumably changes a
minimum number of signs of ordering variables. Because of its low costs compared to the
application of Algorithm 2, we suggest to implement the construction step of the permutation
as random as possible, i.e., breaking ties of the R-values randomly. This allows to run the
repair strategy several times with the same input yielding different outputs.
Although Algorithm 3 works perfectly fine in practice, we also present another strategy for
some reasons. First, the computational cost of applying the Goemans-Williamson hyperplane
rounding once is still relatively high compared to the repair strategy. We want to reuse
the same (infeasible) ±1-vector more often yielding more feasible orderings. Second, repair
strategy 1 has a blemish when we claim some ordering variables to have specific values. If
the ±1-vector was constructed with some predefined fixations of variables, Algorithm 3 may
ignore and destroy these fixations. Admittedly, this should happen less frequently as the

54 A Novel Approach for SRFLP

Algorithm 3: Repair strategy 1

Input: A vector x ∈ {−1,+1}(
n
2) with entries xij, 1 ≤ i < j ≤ n

Output: A permutation π ∈ Πn (a feasible ordering)
Initialization: R[k]← 0, k = 1, . . . , n

foreach entry xij of x do
if xij = +1 then

R[i]← R[i] + 1
else

R[j]← R[j] + 1

Construct π = (π1, . . . , πn) ∈ Πn such that R[π1] ≥ R[π2] ≥ . . . ≥ R[πn]
return π

matrix X approaches to the optimal solution. Nonetheless, if we work with some weaker
semidefinite bounds in a branch-and-bound framework, this may be a design issue. As we
propose a particular branching rule in Section 5.4 that requires feasible solutions within
the current subproblem, we present an alternative repair strategy that preserves all given
fixations of variables and only produces solutions feasible for the respective subproblem.
Now suppose that we are given a set of fixed ordering variables and their corresponding
values. We assume that these fixations are consistent, i.e., we can still find a feasible vector
of ordering variables by choosing the other values appropriately. Also, the set should be
maximal in the sense that each non-fixed variable can still attain both possible values ±1.
We can then construct a vector of ordering variables which respects all fixations by iteratively
fixing all other variables. At each iteration, we fix any single non-fixed ordering variable to
its desired value. We then have to ensure that the resulting set of fixations again satisfies
our assumptions, i.e., it is consistent and maximal. Doing so boils down to examining the
3-cycle-equations (3.5) for implicit fixations, since the were introduced to model transitivity
in Section 3.1. This can lead to a snowball effect where many variables are fixed at once. We
precede until all variables are fixed.
Our implementation of this repair strategy is given in Algorithm 4. Since a different order
of the iterative fixations of all originally non-fixed variables can result in different feasible
ordering vectors, and hence more diversity, a permutation of the ordering variables is also
required as part of the input. Most of the time is spent in the routine which updates the
set of (implicit) fixations, guaranteeing the correctness of Algorithm 4. This can be done
by checking all 3-cycle-equations which involve just (implicitly) fixed ordering variables. As
each ordering variable is only present in O(n) 3-cycle-equations, we can bound the overall
computational effort of Algorithm 4 by O(n3). Thus, we can afford to run repair strategy
2 with O(n) different permutations of the ordering variables for each ±1-vector produced
by the Goemans-Williamson hyperplane rounding. For this purpose, we mainly use random
permutations, but also some heuristic choices, e.g., by sorting the fractional ordering variables
in increasing or decreasing order. An extension to the repair strategy would be to compute
the permutation only during its execution. Reasonable heuristic choices for the next ordering
variable to be fixed include: choosing the one that would lead to the most implicit fixations,

A Novel Approach for SRFLP 55

Algorithm 4: Repair strategy 2

Input: A vector x ∈ {−1,+1}(
n
2) with entries xk, 1 ≤ k ≤

(
n
2

)
,

a permutation (π1, . . . , π(n2)
) ∈ Π(n2)

,

a consistent maximum index set F ⊆ {1, . . . ,
(
n
2

)
} of fixed variables with

corresponding fixed values VF ∈ {−1,+1}F

Output: A vector x̃ ∈ {−1,+1}(
n
2) of ordering variables representing a feasible

ordering
for k = 1 to

(
n
2

)
do

if πk /∈ F then
F ← F ∪ {πk}
Vπk ← xπk
Update F and VF by checking all 3-cycle-equations for implicit fixations

for k = 1 to
(
n
2

)
do

x̃k ← Vk
return x̃

choosing the one that violates the fewest 3-cycle-equations if all remaining ordering variables
would be fixed a once, and similar ideas. However, we stick to Algorithm 4 due to its simplicity
and efficiency.
We also implemented a simple 2-opt local search which tries to improve a valid ordering
by swapping the position of two facilities. Since the objective value of an ordering can be
computed in O(n2) and there are O(n2) possibly swaps, we should not apply the local search
improvement heuristic too often. We noticed that it works exceptional well and often finds
the optimal solution for small and medium-sized instances very quickly, even if we are not
anywhere near to the optimal solution of the semidefinite relaxation. Also on larger instances,
the combination of our proposed SDP-based heuristics and the local search is quite effective.
However, for hard instances it depends only on the SDP-based heuristics whether we find
the optimal solution. In [41] another idea for improving the heuristics is proposed and was
already used for the max-cut problem in [72, 73]. If x̂ denotes the best vector of ordering
variables found so far, a new semidefinite matrix X̂ is computed as a convex combination
of X and x̂x̂>. All heuristics are then also applied to X̂. This is motivated by the fact that
X̂ might be nearer to the optimal solution than X, because it is shifted towards an already
found good heuristic solution. However, we did not implement this idea, since it would require
a Cholesky factorization of X̂ and our heuristics already worked exceedingly well.
Let us now summarize how we exactly use our proposed heuristics. We apply them to each it-
erateXk in the bounding procedure of Section 4.2. As already mentioned above, the Cholesky
factorization of Xk is then already available. Depending on the number of facilities n, we
apply the Goemans-Williamson hyperplane rounding n times, yielding n potentially infeasi-
ble vectors of ordering variables. For each such vector, we run repair strategy 1 (Algorithm
3) a few times and repair strategy 2 (Algorithm 4) with some different permutations. We
then try to improve the best ordering found this way with the 2-opt local search algorithm.

56 A Novel Approach for SRFLP

Eventually, the resulting ordering is used to update the best known upper bound. If the ab-
solute gap between the best known lower and upper bound is smaller than one, the bounding
procedure can be stopped, since optimality was proven. We remark that we typically spend
much less than 1% of the overall running time on our heuristics.

5.3 Outline of the implementation

Algorithm 1 in Section 4.2 only sketches the bounding procedure and leaves some important
questions unanswered. For this reason, we now give an overview of our implementation for
SRFLP in more detail which was used to produce the computational results in Chapter 6.
Our program is completely written in the C programming language and calls routines from
some external codes (see Section 4.2): L-BFGS-B [63,86] and DSYEVR of the Intel Math Kernel
Library (MKL). We used the implementation in the free software BiqCrunch [52] as a template.
However, we have rewritten it from scratch, only designed for SRFLP. Our implementation
involves many minor tweaks, but also some crucial improvements which are needed to fulfill
our requirements. This mainly concerns large-scale problems for which our code is much
more efficient and robust. Although BiqCrunch [52] is a branch-and-bound solver, we are
here only interested in computing lower bounds for SRFLP by solving a single semidefinite
relaxation. A branch-and-bound approach is the topic in Section 5.4. Our code typically uses
some adaptive settings which are chosen with respect to the given instance size, i.e., the
number of facilities.

Two different versions. The bounds presented in Section 4.2 are known to be very flexible
in the sense that they allow to compute cheap bounds very quickly, tight bounds with higher
effort, but also some kind of balanced bounds where accuracy is traded for running time
(see [52, 62]). In view of Algorithm 1, this can mainly be done by using different reduction
schemes for the tightness parameter αk and the tolerance εk. Also the underlying semidefinite
relaxation and the corresponding update process for the inequalities can have a major im-
pact on the bounds and running times. For example, we noticed that the heuristic separation
of pentagonal, hexagonal and heptagonal inequalities often improves the lower bound, but
always implies much higher running times. For many instances its usage is indeed unneces-
sary. Whereas tighter bounds can be achieved by applying this heuristic separation, a more
economical or balanced approach would be to omit it. In the latter case, the corresponding
bounds seem to be more attractive in a branch-and-bound approach. For this reason, and to
show the efficiency of (SDP4), we tested two different versions of our program. By potentially
allowing small deviations of Algorithm 1, we present the settings of a more balanced version,
named (BV), and a tighter version (TV). The main difference is that (BV) is directly based
on (SDP4), i.e., it only uses triangle and starlike pentagonal inequalities, and is designed to
perform less function evaluations than (TV). As a result, (BV) requires much less time, but
also fails on solving some large instances.

DSYEVR and L-BFGS-B settings. During each iteration of Algorithm 1, the L-BFGS-B solver
requests many function and gradient evaluations. In view of the correctness of the computed

A Novel Approach for SRFLP 57

lower bounds, the gradient evaluations are a noncritical part, since inaccuracies in these can
only lead to unreasonable trial points suggested by the L-BFGS-B solver. In contrast, the
function evaluations should always be very accurate in order to avoid wrong lower bounds.
Using the default settings of BiqCrunch, we sometimes observed for very small values of the
tightness parameter αk that L-BFGS-B aborts due to inconsistent function and/or gradient
evaluations. If this happens, we would have to stop the bounding procedure prematurely,
since it is likely to happen again and again. To overcome this issue, we demand the highest
possible accuracy in the eigenvalue computation of DSYEVR. This only leads to a performance
loss of about 10% compared to BiqCrunch in terms of the number of function evaluations in
the same period of time. However, we noticed that this also benefits cases in which no issue
would arise by a significantly lower number of required function evaluations to achieve the
same given accuracy with respect to εk. Overall, it even speeds up the bounding procedure.
Moreover, the authors of L-BFGS-B [63,86] suggest to use a number m of memory corrections
between 3 and 20, since higher values would only lead to increased running times. However,
our tests show that higher values ofm still have a positive impact on the optimization process
for SRFLP. For (TV) we use a constant value of m = 42 which leads to a reduced number of
function evaluations for large instances, where αk often takes very small values. For (BV) we
choose m adaptively with respect to the number of facilities: m =

⌊
n
2

⌋
. As in BiqCrunch, we

leave all other L-BFGS-B default settings unchanged except for its built-in termination rules
which we disable.

Bounding procedure parameters. Our settings for the sequence of tightness parameters
αk and tolerance parameters εk are similar to those of BiqCrunch, since they also work well
for SRFLP. However, our bounding procedure has some distinctions. We start with α1 = 0.1,
ε1 = 0.1 in (BV) and α1 = 1, ε1 = 0.1 in (TV). Starting with these values, we impose a
fixed schedule to reduce them. After exactly d

√
n e iterations of Algorithm 1 with the same

parameters α and ε, α is scaled-down by factor 0.5 and ε by factor 0.95 in both versions. This
is continued until the instance is solved to optimality, αk reaches a symbolic value of 10−10,
or a predefined time limit is exceeded. We remark that for all instances which were solved to
optimality, the smallest required value of α was about 10−6. Typically, much higher values
of roughly 10−4 are sufficient. Due to its higher starting value, (TV) needs more iterations of
the bounding procedure than (BV) to reach the same tightness level α. Also, for a fixed value
of α, the tolerance parameter ε always takes smaller values in (TV) leading to more accurate
solutions, but also to more function evaluations. To avoid unreasonable numbers of function
evaluations in extreme cases, we limit the number of function evaluations per iteration. We
allow a maximum number of 2

(
n
2

)√
n per iteration in (TV). In (BV) we allow a maximum

number of 1
p

(
n
2

)√
n evaluations, where p is the number of already consecutive iterations with

the same parameters α and ε. In addition, we also claim a minimum number of evaluations
per iteration for (TV) which we set to 2n. By doing so, we make possible that newly added
inequalities are better incorporated. This leads to more accurate primal variables Xk and
dual variables λk for medium values of α. As a result, the relaxation involves fewer but also
more suitable inequalities, since the update routine is more effective.

58 A Novel Approach for SRFLP

Inequality update routine. As shown in Algorithm 1, the initial relaxation involves
no inequalities. After the new iterate Xk is computed and the primal heuristics have been
applied to it, the set of inequalities is updated. Our tests showed that the L-BFGS-B solver can
effectively handle a huge number of inequalities simultaneously, especially for large instances
where the function evaluation is by far the bottleneck. Therefore, we allow up to two million
inequalities within the relaxation at any time. However, this limit is never reached in our
experiments. The maximum number of inequalities was barely above one million for a very
few instances with n = 100. The typical number for large instances is between three and six
hundred thousand. The inequality update routine works as follows. First, in both versions we
remove all inequalities that have a Lagrange multiplier less than 10−8. The primal variable
Xk is then used to find and separate violated inequalities. The types of inequalities which
are separated (by enumeration or heuristically) again depend on the number p of already
consecutive iterations with same parameters α and ε. Whereas triangle inequalities are always
separated, starlike pentagonal inequalities are only separated if p ≥ 4. In (TV), the heuristic
procedures proposed in Section 5.1 are used to separate pentagonal inequalities if p ≥ 6,
heptagonal inequalities if p ≥ 7 and hexagonal inequalities if p ≥ 8. Hence, not all of
theses types are used for all instances, e.g., the maximum value of p for n ≤ 36 is 6, i.e.,
heptagonal and hexagonal inequalities are never separated. However, we have implemented
a buffer in (TV) which saves a large number of heuristically separated inequalities of previous
iterations. All inequalities therein are always separated again, independent of p. We use
these different stages of separation to attach a much higher value to triangle and starlike
pentagonal inequalities which are the most important ones. Additionally, we scale down the
absolute value of violation for other than triangle inequalities. We use a scale factor of 0.7
for pentagonal inequalities, 0.5 for heptagonal inequalities and 0.4 for hexagonal inequalities.
Hence, we treat a triangle inequality with an absolute violation of the right hand side by 0.1
as equal as a heptagonal inequality with an violation by 0.2. To be qualified to be added to
the relaxation, the scaled violation of any inequality must be at least 10−2 in (BV) and 10−3

in (TV). Using the scaled violations, the most-violated 5n2 inequalities are then added to the
relaxation in (BV) and up to 10n2 in (TV). Their corresponding dual variables are initialized
to zero.

Miscellaneous. The natural symmetry of SRFLP, which also appears in the semidefinite
relaxation (SDP4), can be broken by fixing any single ordering variable to any value. We
observed that the particular choice can have a huge impact on the running time. The required
function evaluations may vary between a factor of about six. However, we always break
symmetry by locating facility 1 on the left of facility 2, i.e., by enforcing y12 = 1. We also
implemented a kind of safeguard against failure of the L-BFGS-B solver. Although we use
DSYEVR settings with maximum accuracy, this still might happen rarely. It may occur when
α takes too small values, or ironically, when the current dual variables are very close to
their optimal values, leading to a vanishing gradient. In case of failure, we check whether the
current stored dual variables are still feasible, i.e., all Lagrange multipliers of inequalities are
greater than or equal to zero. Due to the implementation of L-BFGS-B, this should always be
the case. If so, we immediately reduce α and ε and continue the bounding procedure with the
next iteration. As shown in Table 4.1, the function evaluations can greatly take advantage

A Novel Approach for SRFLP 59

of multi-core processors. Therefore, we also sped up the primal heuristics and separation
routines by parallelizing them with OpenMP. Since we have to manage significantly more
inequalities in the update routine than BiqCrunch, we make use of some more advanced
data structures such as hash tables and red-black trees.

5.4 Towards a branch-and-bound approach

Up to date, there is no proposed exact approach for SRFLP in the literature that is based
on semidefinite programming. Only a very few computational results on the basic relaxation
(SDP1) within a branch-and-bound framework were given in [9]. However, not even medium-
sized instances could be solved within reasonable time. All other approaches, including the
current leading approach by Hungerländer & Rendl [44], only provide lower bounds for the
optimal solution and heuristics for obtaining good feasible orderings. For the most part, we
also focus on this line. First, we propose the new, potentially tighter relaxation (SDP4),
alongside other inequalities which are separated heuristically. Second, we use a well-suited
algorithmic approach to approximate the associated lower bounds. Third, we apply reason-
able designed heuristics to find high quality layouts. Combining these three things leads to
astonishingly strong lower bounds and overall very small optimality gaps in reasonable time,
if at all (see Chapter 6). As a result, our approach clearly outperforms all other approaches
in the literature. However, there are still some very large instances for which our computed
lower bounds are not sufficient to prove global optimality. Using our semidefinite bounds in
a branch-and-bound framework is a natural idea to tackle the remaining instances.
Due to time restrictions and the high potential of solving instances without branching, we
have not tried to solve very large instances this way yet. For a few first initial tests, we
developed a prototype of a branch-and-bound solver for SRFLP. It is even a parallelized
version of our bounding procedure, i.e., more than one node of the branch-and-bound tree
can be evaluated at the same time (similar to [19]). It still lacks many important features
that are required for an efficient solution process. Hence, we could not produce reasonable
computational results yet. However, we already got some insights into its potential and
provide our thoughts and experience in the following. We consider some important questions
like: Which settings of the bounding procedure should be used? Which branching strategy
is the best? When should we stop the bounding process and perform a branching step? How
should such a branching step actually be performed? Which are types of instances for which
a branch-and-bound approach may be more efficient, even if the instance could be solved at
the root node? We remark that we tested the branch-and-bound approach only on small and
medium-sized instances by using less accurate settings than those presented in Section 5.3.
Not surprisingly, the running times are almost always much higher, since it typically requires
many nodes to compensate the weaker lower bounds. One exception is when we have access
to hardware which allows us to solve many nodes in the branch-and-bound tree concurrently,
see below.

60 A Novel Approach for SRFLP

5.4.1 General ingredients

As fixations of variables occur in any branch-and-bound approach, we have to incorporate
them into our semidefinite relaxations. In theory, there are actually two ways to do this.
Note that such a fixation is already obtained by breaking the symmetry of SRFLP. We also
always want to assure that the set of fixations is consistent and maximal as it was already
claimed in Algorithm 4 by enforcing implicit fixations due to transitivity. The first idea
to manage the fixations is to add explicit equations to the relaxation, i.e., constraints of
the type yij = b ∈ {−1, 1}. If doing so, we also might want to add the so-called product
constraints yijykl = bykl, k, l ∈ [n], k < l to achieve better results (see [52]). Hence, the
number of constraints, i.e., the number of dual variables, increases as more variables are
fixed. An interesting advantage of this type of fixation is that it could allow a much better
warm start of the dual variables after a branching step. Maybe some nodes could be pruned
with minimal computational effort. However, this approach is not as robust as its alternative
and the improvement of the lower bound additionally depends on the approximation of the
corresponding Lagrange multipliers. Therefore, we did not consider this approach at all. The
other more natural possibility is to substitute the fixed variables in all constraints and the
objective function by their fixed values. This allows an exact consideration of all fixations and
moreover reduces the problem size, leading to potentially lower running times. If all variables
are fixed, we have an explicit expression of the lower bound, whereas we would have a gigantic
optimization problem with the first approach. We will later argue that suitable fixations lead
to significantly lower running times not only due to decreased problem sizes, but also due to
a better behavior of the iterative solution process requiring much less function evaluations.
It turns out to be a challenging task to embed our bounding procedure into a branch-
and-bound algorithm in an efficient way. From all settings, the control over the number of
function evaluations is the most critical part. Hence, the tolerance parameters εk and possibly
an upper limit on the function evaluations have to be chosen appropriately. Their impact is
crucial, since our iterative bounding procedure only yields approximate solutions, and only
slightly weaker bounds can lead to many more nodes in the branch-and-bound tree. On the
other hand, the number of required function evaluations often grows quickly with decreasing
α and ε. It is important to recognize when the computational effort gets too high and it is
very unlikely that the current node can be pruned. We will later give a useful rule of thumb
when a branching step is advisable. Overall, the main question is: which settings provide
the best ratio of accuracy to running time? Unfortunately, there seems to be no simple
answer to this question, since all instances behave differently. Nonetheless, we observed that
the accuracy should have a much higher precedence over running time. Before we start to
discuss how the effort for each node can be kept as small as possible, we want to emphasize
one very important fact which is relevant for us: the tolerance parameter ε plays a much
bigger or at least different role than one may think. As the optimization process goes on,
smaller values of ε for sure yield better lower bounds. However, for small values of α it often
happens that the lower bound only shows very slow and tiny progress, but a great many of
iterations is still required to achieve the given tolerance ε. This is because of the iterates Xk

are very sensitive to small changes of the dual variables. Choosing a higher tolerance ε or
stopping the optimization process of dual variables prematurely does not weaken the current

A Novel Approach for SRFLP 61

lower bound that much, but can lead to a poor approximation Xk of the primal variable X.
This results in an effectively superfluous separation process for the inequalities and the lower
bounds indeed become weaker, but only in future iterations.
Our implementation in Section 5.3 illustrates that most of the time is spent on finding a good
subset of inequalities, since we always run d

√
n e iterations with the same values of α and ε.

This is also done for relatively high values of α for which it is clear that the lower bound has
poor quality. Hence, to design an efficient branch-and-bound approach, it is indispensable to
endow the child nodes with all gathered information in the father node and prior ancestors.
More precisely, when the branching step is performed, all active inequalities in the father node
should be transferred to its children in such a way that these inequalities are not removed in
update routines. The children themselves hand down only the inequalities to their children
which are active at the end of their bounding procedure. As we already know, more and
more function evaluations are required as α decreases. In addition to this, the consideration
of newly added inequalities becomes also more expensive, since their corresponding Lagrange
multipliers are always initialized to zero. Thus, the effort for incorporating new inequalities
appropriately increases rapidly. We believe that adding new inequalities to the relaxation is
not worthwhile within a branch-and-bound approach for small values of α, say α ≤ 10−4,
and should be omitted then. Once this threshold is reached, we suggest to reduce α more
aggressively in order to get a good lower bound more quickly. However, inequalities should
still be separated to supply them later to the child nodes. With increasing number of nodes,
the knowledge of the instance grows. We guess that the tolerance parameter ε can then
take higher values without any complications. In general, a much more flexible bounding
procedure than proposed in Section 5.3 is necessary, especially the initial starting values of
α and ε should be chosen adaptively. A fixed number of iterations also seems to be an odd
choice in this setting.
So far we have only discussed how to redesign the bounding procedure to obtain efficient
lower bounds. We now turn to the other aspects of any branch-and-bound approach. The
primal heuristics presented in Section 5.2 also work very well on more rough approximations
Xk of the primal variable X due to their highly randomized nature. To play it safe, they
probably should be applied more often than we do in our bounding procedure in Section 5.3,
especially when the bounding process of any node is finished. Also we highly recommend
to use the 2-opt local search heuristic, since it always yields near optimal or even optimal
solutions. As finding high quality layouts is relatively easy, we should follow a least lower
bound first strategy, i.e., always considering the node with the least lower bound. There is
one simple criterion which allows us to detect whether we still have the chance to prune the
current node. For any instance solved to global optimality with the bounding procedure of
Section 5.3, we observed that the optimality gap at least halves itself when α is reduced by
factor 0.5 (assuming that we know the optimal solution). Hence, it is a good idea to finish
the bounding process and perform a branching step if we can not notice such a behavior.
This makes clear why primal heuristics, especially the 2-opt local search, are very important.

62 A Novel Approach for SRFLP

5.4.2 Branching strategies

We now consider different possible branching strategies for SRFLP. A natural approach is to
choose a suitable single non-fixed ordering variable xij and to create two child nodes in which
xij is fixed to −1 or +1 respectively. To do this, we extract the first column of the last iterate
Xk yielding the fractional vector x of ordering variables. Commonly used branching strategies
include the least-fractional and most-fractional rules (see e.g. [50,52,72,73]). Least-fractional
means that we branch on the variable xij which is furthest from 0 and most-fractional that
we branch on the variable xij which is closest to 0. Both strategies are reasonable and have
their own strengths. Choosing the variable which is the furthest from 0 has the advantage
that one of the two created subproblems is more likely to be pruned quickly, since the lower
bound can have a huge surge. However, the lower bound in the other subtree can have
only a little or no improvement at all. The most-fractional rule aims to resolve the most
difficult decisions first, probably leading to noticeable improvements of the lower bounds
in both subproblems. Therefore, the least-fractional strategy typically leads to a narrower,
but also deeper branch-and-bound tree than the most-fractional strategy. Our experiments
indicate that the most-fractional rule is superior for SRFLP, since it produces significantly
fewer nodes and almost always has lower running times. This is mainly due to implicit
fixations of ordering variables which occur much more frequently when the most-fractional
strategy is used. This results in a stronger decline of the problem sizes than possible with
the least-fractional strategy.
We want to introduce two more branching strategies which have proven to be very useful and
take advantage of the structure of SRFLP. The first strategy addresses an issue which may
arise when the simple most-fractional rule is used. The latter is very sensible with respect
to the approximation Xk of X. Especially when we terminate the bounding procedure quite
early or when we cannot achieve the desired accuracy in reasonable time for small values
of α, the most-fractional rule might produce unwanted and unhelpfully subproblems. This
can lead to many nodes in the branch-and-bound tree, comparable to the least-fractional
strategy. In particular, the path which contains the optimal solution can be of high length.
Our suggested strategy tries to keep this length as small as possible and leads to a high
number of implicit fixations. We propose the following branching rule.

(R1) : Among all ordering variables xij for which i is adjacent to j in the best known
ordering for the current subproblem, branch on the most-fractional one.

Applying branching rule (R1) requires feasible orderings for each subproblem. These can
be easily found by Algorithm 4. Depending on the best known solution for the current
subproblem and already fixed variables therein, there are at most n− 1 candidate variables
to branch on. Moreover, if these variables are fixed to values equal to those in the best known
solution (or any other solution), all ordering variables are fixed due to implicit fixations.
Hence, assuming that we already find the optimal solution at the root node, the path in
the branch-and-bound tree which contains the optimal solution has a maximum length of
n − 1, since the best known feasible solution for all nodes on this path will always be the
same. Branching rule (R1) less depends on the quality of the approximate solution Xk as
it always yields a reasonable branching decision. However, finding a good and hopefully the

A Novel Approach for SRFLP 63

best solution within a subproblem becomes more important than ever before. We observed
that the most-fractional branching rule and (R1) often produce the same branching decision,
especially for good approximationsXk. In general, they seem to yield similar number of nodes
for small instances of SRFLP, but the most-fractional rule is outperformed by (R1) as the
instance size grows or weaker bounds are used.
The other branching strategy does not follow the standard template and may produce sig-
nificantly more than two subproblems, but has a remarkable impact on the performance of
the bounding procedure.

(R2) : Choose either left or right. Determine the outermost position on the chosen side
on which under consideration of already fixed variables more than one facility
can still be placed. Create a subproblem for each facility which can be placed at
this specific position and fix the ordering variables appropriately.

Obviously, branching rule (R2) does not depend on any approximation Xk or best known
solution. It also provides few degrees of freedom, since we only have to choose between left
or right. The number of produced subproblems depends on already fixed variables. Taking
the symmetry breaking into account, (R2) produces at most n − 1 subproblems, and of
course at least two. Although the number of created nodes is relatively high, more variables
are fixed simultaneously than with other branching strategies: the number of newly fixed
variables in all created subproblems is at least as high the number of created subproblems.
Therefore, the improvements of the lower bounds in many subtrees may be very high so
that they can be pruned very quickly. This is indeed the case for many instances, but leads
to huge computational efforts for some instances where this is not the case. However, we
actually do not want to use (R2) as a branching strategy on its own, since its true value
lies somewhere else. We suggest to apply this strategy only a very few times, maybe only
at the root node, and to use other branching strategies like (R1) thereafter. Without any
exception we observed that (R2) significantly reduces the number of function evaluations, at
least by factor 2, but often considerably higher, leading to a behavior similar to the choice
of symmetry breaking. This positive effect seems to be much stronger for larger instances,
in particular when small values of α are involved. Provided suitable hardware for solving
many subproblems concurrently, branching strategy (R2) may be very valuable to solve the
remaining unsolved large instances. In fact, we were able to solve some small instances faster
than with the bounding procedure of Section 5.3. However, the CPU times were much higher.
Finally, let us remark that there are types of instances which are much more suited for a
branch-and-bound approach combined with our bounding procedure than others. We made
the experience that instances with many solutions having objective values near to the opti-
mal solution are much harder so solve. For such instances a bounding procedure with high
accuracy is clearly preferable. On the other hand a branch-and-bound approach may be more
efficient if all feasible solutions are well separated from each other. This is especially the case
for randomly generated instances with a high range of coefficients in its data. Whereas it can
be expensive to achieve the necessary absolute accuracy at the root node, branching rule (R1)
plays out its strengths and allows to use considerably weaker bounds. For these instances,
the optimal solutions can easily be found heuristically and subproblems not containing the
optimal solution are pruned quickly.

Chapter 6

Computational Results

In this chapter we provide extensive computational results on our proposed approach for
SRFLP. We test our two different versions (BV) and (TV) on many small, medium and large
instances from the literature and compare them to other successful approaches, especially the
current leading approach by Hungerländer & Rendl [44]. Our set of test instances includes
almost all publicly available benchmark instances.12 This set covers many different types:
randomly generated instances, instances with unit facility lengths, instances derived from
other problems such as the quadratic assignment problem and more. On all of these, (BV)
significantly reduces the required computing times for all instances successfully solved by the
current leading approach by Hungerländer & Rendl [44]. It always computes their obtained
lower bounds in significantly less time and also yields much tighter bounds, especially for
large instances. The inherent accuracy allows to solve remarkably larger instances to global
optimality for the very first time. At the cost of higher running times, the version (TV)
solves even more instances leaving only a few remaining unsolved. Additionally, our primal
heuristics turn out to be much better. Taken together, our obtained lower and upper bounds
almost always reduce the optimality gap compared to the approach by Hungerländer & Rendl
[44] at least by a factor of about 10, usually significantly more. For all unsolved instances, we
compare our best upper bounds to the best known solutions found by heuristic approaches
in the literature.34 We also demonstrate that the simple 2-opt local search heuristic is worth
its application, since it can find the optimal solution of even fairly large instances quickly.
To emphasize this, we let it run on randomly generated permutations for exactly one second
before the actual optimization process in (TV) starts. Hence, the running time of (TV) is at
least one second for all instances.
All results in [41, 43, 44] regarding the bundle approach by Hungerländer & Rendl [44] (see
Section 4.1) were carried out on a machine with an Intel Xeon 5160 processor with 3 GHz
and 2 GB RAM. We obtained our results on an Intel Xeon E5-2640V4 processor with 2.4
GHz and 1 GB RAM. For very large instances with n = 100 we used all of its cores, but
limited the number of cores used to only four for all other instances.

1https://www.miguelanjos.com/flplib
2https://www.philipphungerlaender.com/benchmark-libraries/layout-lib/row-layout-instances/
3https://www.miguelanjos.com/ImprovedResults.txt
4https://www.philipphungerlaender.com/benchmark-libraries/layout-lib/single-row-benchmarks/

65

https://www.miguelanjos.com/flplib
https://www.philipphungerlaender.com/benchmark-libraries/layout-lib/row-layout-instances/
https://www.miguelanjos.com/ImprovedResults.txt
https://www.philipphungerlaender.com/benchmark-libraries/layout-lib/single-row-benchmarks/

66 Computational Results

Typical behavior of our solution approach. Before we start with the actual results,
let us first illustrate the typical behavior of (BV) and (TV) on instances that were solved to
optimality. More precisely, we look at how the optimality gap vanishes and the number of
performed function evaluations increases as the tightness parameter α decreases. In Figure
6.1, we show the typical qualitative characteristics, vicariously for all instances, for the
particular instance ‘Y-60’ solved by (TV). Assume now that we already know the optimal
objective value of the given instance. Dependent on α, Figure 6.1 then depicts the courses
of the optimality gap, which is the relative difference of the current lower bound and the
optimal value, and the accumulated number of function evaluations. Note that all axes have
a logarithmic scale. Since the plot of the gap is nearly a straight line, the gap is always
reduced by nearly the same constant factor as α is halved. If we take a closer look, we can
see that this constant factor is greater than 2. This can be observed for any instance that
was successfully solved by (BV) or (TV). In almost all cases, the factor was between 2 and
3. Hence, the bounding procedure quickly produces relatively small optimality gaps. But it
can take much more time to prove optimality, especially for badly scaled instances for which
a high relative accuracy is necessary. Figure 6.1 also shows that the number of required
function evaluations strongly increases as α attains smaller values, but flattens a bit when
the current solution is very close to the optimal solution. For instances which could not be
solved, the number of function evaluations typically continued to increase even further as α
was halved.

Comparison on ‘classical’ instances. We first consider some well-known ‘classical’
SRFLP benchmark instances which were solved by many solution approaches in the liter-
ature before. These include linear and semidefinite programming approaches presented in
this thesis other than the approach by Hungerländer & Rendl [44]: the betweenness ap-
proach of Section 2.3 in [4], the distance approach of Section 2.2 in [5] and the semidefinite
approach in [10] using (SDP2) as discussed in Section 3.3. The results in [4] were obtained
on an Intel Core Duo processor with 1.73 GHz and 1 GB RAM, in [5] a Pentium Dual Core
PC with 2.5 GHz and 2 GB RAM was used and a machine with a 2.0 GHz Dual Opteron
processor with 16 GB RAM was employed in [10].
In Table 6.1 we compare the above approaches, as well as the approach by Hungerländer &
Rendl [44] and our versions (BV) and (TV). The first two columns identify 14 instances by their
name and where they are taken from. The seven ‘S’ instances were introduced in the initiating
paper [78] for SRFLP and are the oldest of all instances. The two ‘H’ instances originate from
[37] and are constructed from well-known instances of the Quadratic Assignment Problem
[64]. The remaining five instances were generated randomly in [4] or are modifications of
some already existing SRFLP instances [1, 3]. The next two columns of Table 6.1 show the
size of each instance and its optimal value. All subsequent columns list the required running
times by all approaches to find an optimal ordering and prove its optimality.
First, we notice that all approaches can solve very small instances with n ≤ 11 quickly.
However, the running times of the distance approach [5] and the semidefinite approach
in [10], using an interior-point method, rise dramatically for n ≥ 20. Taking the slower
machine into account, the betweenness approach [4] is highly competitive for all instances
with up to 20 facilities. It has significantly lower running times compared to the approach by

Computational Results 67

2−3 2−5 2−7 2−9 2−11 2−13 2−15 2−17 2−19

29

27

25

23

21

2−1

2−3

2−5

2−7

2−9

2−11

α

G
ap

in
%

103

104

105

A
cc
um

ul
at
ed

nu
m
be

r
of

fu
nc
ti
on

ev
al
ua

ti
on

s

Evals
Gap

Figure 6.1: Typical courses of the optimality gap and the accumulated number of function
evaluations. The shown data correspond to the instance ‘Y-60’ which was solved by (TV).

LP-based approaches SDP-based approaches
Instance Source n Optimum [4] [5] (SDP2) [10] (SDP3) [44] (BV) (TV)

S5 [78] 5 151 0.1 0.1 – 0.1 0.0 1.0
S8 [78] 8 801 0.1 0.5 – 0.6 0.0 1.2
S8H [78] 8 2324.5 0.1 0.1 0.2 2.3 0.0 1.1
S9 [78] 9 2469.5 0.1 0.1 – 0.7 0.0 1.3
S9H [78] 9 4695.5 0.1 2.4 – 9.2 0.1 1.5
S10 [78] 10 2781.5 0.2 0.4 3.4 0.6 0.1 1.5
S11 [78] 11 6933.5 0.3 0.7 32.6 1.3 0.2 1.8
P15 [1] 15 6305 2.8 – – 19.7 1.6 12.5
P17 [3] 17 9254 8.4 – – 34.9 2.7 23.1
P18 [3] 18 10650.5 13.3 – – 32.5 2.9 22.5
H20 [38] 20 15549 30.8 2:22 26:54 54.3 4.9 36.1
H30 [38] 30 44965 27:35 28:07:49 15:50:57 9:07 48.5 6:34

Am33_03 [4] 33 69942.5 2:22:32 – – 36:33 1:30 9:49
Am35_03 [4] 35 69002.5 2:17:52 – – 53:14 2:57 18:53

Table 6.1: Comparison of most successful LP-based and SDP-based approaches for some SRFLP
benchmark instances with up to 35 facilities. The running times are given in sec, in min:sec or
h:min:sec respectively. A ‘–’ sign indicates that the instance was not considered by the respective
approach.

68 Computational Results

Hungerländer & Rendl [44]. Note that for the latter sometimes ‘accidents’ happen, i.e., the
bundle approach shows a strongly non-monotonic behavior in the number of facilities, even
for such small problem sizes. Despite our faster machine, the version (BV) seems to be on a
par with the betweenness approach for n ≤ 20. This not true for (TV), since it requires much
higher computing times on all such instances. However, it still has a performance similar to
the bundle method approach. For n ≥ 30, the betweenness approach is clearly dominated
by the semidefinite approaches using Lagrangian relaxation. Especially our version (BV)
outperforms all other approaches by far. We also notice that the ratio of running times
between (BV) and (TV) flattens on larger instances, i.e., (TV) catches up and is then also
superior to the bundle approach by Hungerländer & Rendl [44].
We remark that the bundle approach by Hungerländer & Rendl [44] is the only approach in
the literature which is capable of solving some larger instances to optimality in reasonable
time and was tested on many more instances than all other approaches. It also provides
much stronger lower bounds for large-scale instances compared to [6] and [12] which only use
(SDP1) or (SDP0) respectively. Therefore, for the rest of this chapter, we only compare our
versions (BV) and (TV) against each other and the approach by Hungerländer & Rendl [44].

More small and medium-sized instances. Next, we consider many instances with unit
facility lengths which were derived in [68] from various other problems such as the Quadratic
Assignment Problem. All of these instances have up to 35 facilities and were successfully
solved by the bundle method approach [44]. Table 6.2 shows the required running times for
the bundle approach and our two versions (BV) and (TV). It also contains results for five
larger randomly generated instances with n = 40 that were introduced by Hungerländer &
Rendl [44].
We can see that (BV) is nearly always at least 10 times faster than the bundle approach
and sometimes even more than 20 times faster. In general, the computing times of (BV) grow
much smoother with the number of facilities than those of the bundle approach. For instances
with n = 40, (TV) is about 5 times slower than (BV) but still almost always faster than the
approach by Hungerländer & Rendl [44]. The running times also do not vary that much on
equally sized instances compared to the bundle approach.

Optimal solutions for previously unsolved medium-sized instances. Let us now
consider medium-sized instances with up to 60 facilities for which mostly a proven optimal
solution was not known before. For these instances, the bundle approach is restricted to
500 function evaluations in [42,43] in order to have a better control over the computational
effort and to react to the slow convergence behavior of the bundle method. However, we
impose no such limit for our approach on these instances. But in addition to our normal
stopping criteria (see Section 5.3), we stop the bounding procedure when the lower bound
improved by less than 0.5 after a reduction of the tightness parameter α and when it is still
not sufficiently close to the upper bound.
The set of instances contains yet more larger ‘Y’ instances [85] with unit facility lengths,
as well as parts of the ‘ste’ and ‘sko’ instances which were introduced in [12]. These are
also derived from Quadratic Assignment Problem instances, but only the instances ending

Computational Results 69

Instance Source n Optimum (SDP3) with bundle method [44] (BV) (TV)

O-5 [65] 5 150 1 0.0 1.0
O-6 [65] 6 292 1 0.0 1.0
O-7 [65] 7 472 1 0.0 1.1
O-8 [65] 8 784 1 0.1 1.3
O-9 [65] 9 1032 1 0.1 1.3
O-10 [65] 10 1402 1 0.1 1.7
O-15 [65] 15 5134 4 0.8 7.2
O-20 [65] 20 12924 37 4.9 30.7
S-12_t [77] 12 4431 4 0.3 3.0
S-13_t [77] 13 5897 4 0.4 3.8
S-14_t [77] 14 7316 15 1.0 7.3
S-15_t [77] 15 8942 19 1.1 7.5
S-16_t [77] 16 11019 27 1.8 11.8
S-17_t [77] 17 13172 50 2.2 19.7
S-18_t [77] 18 15699 48 2.6 21.9
S-19_t [77] 19 18700 1:43 3.4 27.9
S-20_t [77] 20 21825 2:09 6.1 42.4
S-21_t [77] 21 24891 3:20 18.1 1:15
S-22_t [77] 22 28607 3:57 12.3 1:18
S-23_t [77] 23 33046 3:15 9.4 1:25
S-24_t [77] 24 37498 3:31 15.3 1:32
S-25_t [77] 25 42349 7:07 21.7 2:27
N-15 [64] 15 2186 17 1.8 8.0
N-16a [64] 16 3050 8 1.5 9.3
N-16b [64] 16 2400 6 1.0 7.9
N-17 [64] 17 3388 13 1.6 17.8
N-18 [64] 18 3986 16 3.0 21.1
N-20 [64] 20 5642 1:11 7.4 48.2
N-21 [64] 21 5084 1:16 9.3 56.4
N-22 [64] 22 6184 1:20 9.2 1:11
N-24 [64] 24 8270 2:12 14.8 7:21
Y-6 [85] 6 1372 1 0.6 1.0
Y-7 [85] 7 1801 1 0.6 1.1
Y-8 [85] 8 2302 1 0.8 1.2
Y-9 [85] 9 2808 1 0.0 1.2
Y-10 [85] 10 3508 2 0.9 1.7
Y-11 [85] 11 4022 4 1.0 2.2
Y-12 [85] 12 4793 10 1.2 3.4
Y-13 [85] 13 5471 9 1.3 4.3
Y-14 [85] 14 6445 34 1.7 5.7
Y-15 [85] 15 7359 26 1.5 5.9
Y-20 [85] 20 12185 1:14 5.2 55.7
Y-25 [85] 25 20357 5:14 19.3 2:25
Y-30 [85] 30 27673 17:46 1:08 9:35
Y-35 [85] 35 38194 25:50 3:23 15:27

N40_1 [44] 40 107348.5 1:01:36 5:08 30:34
N40_2 [44] 40 97693 52:52 5:16 34:08
N40_3 [44] 40 78589.5 1:21:40 8:24 30:47
N40_4 [44] 40 76669 1:15:58 7:29 37:08
N40_5 [44] 40 103009 2:20:09 7:37 41:36

Table 6.2: Results on many small and medium-sized SRFLP instances with unit lengths (except the
last five). The last five instances were randomly generated in [44]. The running times are given in
sec, in min:sec or h:min:sec respectively.

70 Computational Results

on ‘1’ have unit lengths. The other instances have randomly generated lengths. Table 6.3
shows the computational results on these instances for the bundle approach and (BV). For
each instance, the column ‘Best’ lists the best known upper bound in the literature for this
particular instance. ‘LB’ in Table 6.3 stands for the respective computed lower bounds of
both approaches and ‘UB’ for the upper bounds obtained by the deployed heuristics. The
corresponding gaps (in %) are given by (UB− LB) /LB · 100%. Additionally, the column
‘Time best’ shows which computing time is required by (BV) to find a solution with objective
value at least as good as the best known solution in the literature. Moreover, the last column
of Table 6.3 shows after which time (BV) has improved on the lower bound computed by
Hungerländer & Rendl [42,43].
We can see in Table 6.3 that the bundle approach only solves six instances to global opti-
mality, the largest having 42 facilities. In contrast, (BV) successfully solves all but two of the
largest instances in less than 90 minutes. Hence, (BV) computes much stronger lower bounds
in much less time. This can also be seen in the last column showing that (BV) computes the
same lower bounds between 10 to 20 times faster than the bundle approach by Hungerländer
& Rendl [44]. We remark that for some instances, the triangle inequalities actually suffice for
solving. Therefore, the mostly small, but not optimal gaps in the bundle approach indicate
that the accuracy of the bundle method is most likely the limiting factor.
The gaps of (BV) for the two unsolved instances are very slight, but the running times to
achieve these gaps are much higher. However, this is only due to the fixed nature of our
bounding procedure and our loose stopping criteria. The high running times are caused by
very small values of the tightness parameter α for which an excessive number of function
evaluations is required, whereas the improvement on the lower bound is very small. Hence,
much cheaper, but only slightly weaker bounds for these instances could be obtained by using
more suited stopping criteria. However, (BV) still computes the lower bounds of Hungerländer
& Rendl [44] in significantly less time on these instances.
(BV) always finds an ordering with objective value equal to best known solution in the
literature, proving that an optimal ordering was known before. Note that this is also true
for the two unsolved instances, see below. Moreover, these solutions are often found within
only one minute. In all except one case, it is also found before the computed lower bound
reaches the level of the bundle approach. In contrast, Hungerländer & Rendl [44] often do
not find these optimal solutions with their proposed heuristics.
Table 6.4 shows the results of (TV) when applied to the instances of Table 6.3 and compares
them to (BV). As we can see, (TV) is able to solve all instances to optimality, but requires
running times which are about five times higher than those of (BV). For the smallest instances
with n = 36, (TV) is sometimes even slower than the approach by Hungerländer & Rendl [44].
For the rest of the instances, (TV) still reaches the lower bound of the bundle approach in
much less time and is capable of computing tighter bounds than (BV). Although (TV) solves
the two instances which could not be solved by (BV), the needed running times for these are
substantially higher than for all other instances. This shows that the bounds produced by
(BV) can be improved, but most probably at the cost of a much higher computational effort.
It is also striking that (TV) often finds the optimal ordering within one second, i.e., by using
only the 2-opt local search heuristic. As the instance size grows, this becomes less likely.

Computational Results 71

(S
D
P
3
)
w
it
h
bu

nd
le

m
et
ho

d
re
st
ri
ct
ed

(B
V)

to
50
0
fu
nc
ti
on

ev
al
ua

ti
on

s
[4
2,
43
]

In
st
an

ce
So

ur
ce

n
B
es
t

L
B

U
B

G
ap

T
im

e
L
B

U
B

G
ap

T
im

e
T
im

e
be

st
Im

pr
ov
e
L
B

(S
D
P
3
)

Y
-4
0

[8
5]

40
47
56
1

47
56
1

47
56

1
0%

2:
14
:4
7

47
56
1

47
56
1

0%
8:
26

6.
6

–
Y
-4
5

[8
5]

45
62
89
0

62
84
9

62
90

4
0.
09
%

3:
44
:4
3

62
89
0

62
89
0

0%
29
:0
5

6:
11

22
:0
4

Y
-5
0

[8
5]

50
83
12
7

83
08
6

83
12

7
0.
05
%

6:
03
:2
7

83
12
7

83
12
7

0%
31
:3
0

18
:2
8

22
:5
5

Y
-6
0

[8
5]

60
11

20
55

11
18
84

11
21
26

0.
22
%

19
:5
7:
35

11
20
50
.5
75
1

11
20
55

0.
00

39
%

15
:3
8:
43

40
.5

1:
28
:3
5

st
e3
6-
1

[1
2]

36
10
28
7

10
28
7

10
28

7
0%

14
:5
0

10
28
7

10
28
7

0%
2:
43

23
.9

–
st
e3
6-
2

[1
2]

36
18
15
08

18
15
08

18
15
08

0%
25
:2
5

18
15
08

18
15
08

0%
5:
13

16
.4

–
st
e3
6-
3

[1
2]

36
10
16
43
.5

10
16
43
.5

10
16
43
.5

0%
24
:0
1

10
16
43
.5

10
16
43
.5

0%
3:
57

31
.6

–
st
e3
6-
4

[1
2]

36
95
80
5.
5

95
80
5.
5

95
80
5.
5

0%
16
:1
5

95
80
5.
5

95
80
5.
5

0%
3:
50

22
.3

–
st
e3
6-
5

[1
2]

36
91
65
1.
5

91
65
1.
5

91
65
1.
5

0%
17
:5
8

91
65
1.
5

91
65
1.
5

0%
3:
55

9.
0

–

sk
o4
2-
1

[1
2]

42
25
52
5

25
52
1

25
52

5
0.
02
%

2:
23
:0
9

25
52
5

25
52
5

0%
12
:4
5

34
.0

12
:4
5

sk
o4
2-
2

[1
2]

42
21
61
20
.5

21
60
99
.5

21
61
20
.5

0.
01
%

2:
43
:3
4

21
61
20
.5

21
61
20
.5

0%
8:
27

12
.0

8:
06

sk
o4
2-
3

[1
2]

42
17
32
67
.5

17
32
45
.5

17
32
67
.5

0.
01
%

2:
47
:1
8

17
32
67
.5

17
32
67
.5

0%
10
:1
5

17
.3

9:
20

sk
o4
2-
4

[1
2]

42
13
76
15

13
73
79

13
76
15

0.
17
%

2:
53
:0
5

13
76
15

13
76
15

0%
14
:4
5

17
.7

12
:3
7

sk
o4
2-
5

[1
2]

42
24
82
38
.5

24
82
38
.5

24
82
38
.5

0%
1:
08
:4
2

24
82
38
.5

24
82
38
.5

0%
6:
15

10
.8

–

sk
o4
9-
1

[1
2]

49
40
96
7

40
89
5

41
01

2
0.
29
%

4:
36
:2
1

40
96
7

40
96
7

0%
53
:4
9

9:
33

21
:5
8

sk
o4
9-
2

[1
2]

49
41
61
78

41
61
42

41
61
78

0.
01
%

8:
27
:3
4

41
61
78

41
61
78

0%
23
:5
9

35
.2

18
:5
2

sk
o4
9-
3

[1
2]

49
32
45
12

32
44
64

32
45
12

0.
02
%

8:
03
:0
3

32
45
12

32
45
12

0%
25
:4
6

15
.8

22
:5
6

sk
o4
9-
4

[1
2]

49
23
67
55
.5

23
67
18
.5

23
67
55
.5

0.
02
%

9:
15
:1
4

23
67
55
.5

23
67
55
.5

0%
29
:2
7

3:
09

29
:0
9

sk
o4
9-
5

[1
2]

49
66
61
43

66
61
30

66
61
43

0.
00

2%
9:
30
:2
2

66
61
43

66
61
43

0%
12
:5
2

51
.1

12
:1
5

sk
o5
6-
1

[1
2]

56
64
02
4

63
97
1

64
02

7
0.
09
%

12
:3
6:
33

64
02
4

64
02
4

0%
1:
01
:4
3

39
:5
1

56
:4
8

sk
o5
6-
2

[1
2]

56
49
65
61

49
64
82

49
65
61

0.
02
%

15
:5
9:
27

49
65
61

49
65
61

0%
50
:3
4

58
.7

45
:4
8

sk
o5
6-
3

[1
2]

56
17
04
49

16
96
44

17
10
32

0.
82
%

16
:2
2:
56

17
03
85
.8
50
4

17
04
49

0.
03

71
%

22
:2
5:
20

1:
16

:3
3

53
:3
3

sk
o5
6-
4

[1
2]

56
31
33
88

31
26
56

31
34
97

0.
27
%

15
:1
7:
25

31
33
88

31
33
88

0%
1:
23
:4
6

49
.7

44
:5
7

sk
o5
6-
5

[1
2]

56
59
22
94
.5

59
19
15
.5

59
23
35
.5

0.
07
%

17
:4
6:
46

59
22
94
.5

59
22
94
.5

0%
1:
21
:0
7

10
:4
0

1:
01
:2
2

Ta
bl
e
6.
3:

R
es
ul
ts

of
th
e
bu

nd
le

ap
pr
oa
ch

[4
4]

an
d
(B
V)

fo
r
m
ed
iu
m
-s
iz
ed

SR
FL

P
in
st
an

ce
s.

T
he

co
lu
m
n
‘B
es
t’
lis
ts

al
lb

es
t
kn

ow
n
up

pe
r
bo

un
ds

in
th
e
lit
er
at
ur
e.

‘T
im

e
be

st
’
de
no

te
s
th
e
ti
m
e
re
qu

ir
ed

by
(B
V)

to
fin

d
an

or
de
ri
ng

w
it
h
su
ch

ob
je
ct
iv
e
va
lu
e
(o
r
be

tt
er
).

T
he

la
st

co
lu
m
n
sh
ow

s
af
te
r

w
hi
ch

ti
m
e
(B
V)

im
pr
ov
es

on
th
e
lo
w
er

bo
un

d
co
m
pu

te
d
by

th
e
bu

nd
le

ap
pr
oa
ch

[4
4]
.
T
he

ru
nn

in
g
ti
m
es

ar
e
gi
ve
n
in

se
c,

in
m
in
:s
ec

or
h:
m
in
:s
ec

re
sp
ec
ti
ve
ly
.

72 Computational Results

(B
V)

(T
V)

In
st
an

ce
So

ur
ce

n
B
es
t

L
B

U
B

G
ap

T
im

e
L
B

U
B

G
ap

T
im

e
T
im

e
be

st
Im

pr
ov
e
L
B

(S
D
P
3
)

Y
-4
0

[8
5]

40
47
56
1

47
56
1

47
56
1

0%
8:
26

47
56
1

47
56

1
0%

42
:3
3

4.
7

–
Y
-4
5

[8
5]

45
62
89
0

62
89
0

62
89
0

0%
29
:0
5

62
89
0

62
89

0
0%

2:
06
:4
3

0.
5

1:
25
:0
0

Y
-5
0

[8
5]

50
83
12
7

83
12
7

83
12
7

0%
31
:3
0

83
12
7

83
12

7
0%

2:
53
:5
0

1:
33
:2
8

2:
04
:2
9

Y
-6
0

[8
5]

60
11
20

55
11
20
50
.5
75
1

11
20
55

0.
00
39

%
15
:3
8:
43

11
20
55

11
20
55

0%
35
:5
6:
37

2:
10
:0
1

7:
31
:0
3

st
e3
6-
1

[1
2]

36
10
28
7

10
28
7

10
28
7

0%
2:
43

10
28
7

10
28

7
0%

14
:1
9

0.
7

–
st
e3
6-
2

[1
2]

36
18
15
08

18
15
08

18
15
08

0%
5:
13

18
15
08

18
15
08

0%
20
:3
9

21
.1

–
st
e3
6-
3

[1
2]

36
10
16
43
.5

10
16
43
.5

10
16
43
.5

0%
3:
57

10
16
43
.5

10
16
43
.5

0%
19
:1
8

0.
1

–
st
e3
6-
4

[1
2]

36
95
80
5.
5

95
80
5.
5

95
80
5.
5

0%
3:
50

95
80
5.
5

95
80
5.
5

0%
19
:0
8

0.
2

–
st
e3
6-
5

[1
2]

36
91
65
1.
5

91
65
1.
5

91
65
1.
5

0%
3:
55

91
65
1.
5

91
65
1.
5

0%
20
:0
0

0.
0

–

sk
o4
2-
1

[1
2]

42
25
52
5

25
52
5

25
52
5

0%
12
:4
5

25
52
5

25
52

5
0%

55
:3
2

12
.6

52
:3
3

sk
o4
2-
2

[1
2]

42
21
61
20
.5

21
61
20
.5

21
61
20
.5

0%
8:
27

21
61
20
.5

21
61
20
.5

0%
43
:3
8

0.
1

43
:3
8

sk
o4
2-
3

[1
2]

42
17
32
67
.5

17
32
67
.5

17
32
67
.5

0%
10
:1
5

17
32
67
.5

17
32
67
.5

0%
57
:3
6

7.
4

48
:1
7

sk
o4
2-
4

[1
2]

42
13
76
15

13
76
15

13
76
15

0%
14
:4
5

13
76
15

13
76
15

0%
1:
06
:2
8

7.
7

48
:4
2

sk
o4
2-
5

[1
2]

42
24
82
38
.5

24
82
38
.5

24
82
38
.5

0%
6:
15

24
82
38
.5

24
82
38
.5

0%
28
:0
6

0.
1

–

sk
o4
9-
1

[1
2]

49
40
96
7

40
96
7

40
96
7

0%
53
:4
9

40
96
7

40
96

7
0%

3:
55
:4
3

23
:2
4

1:
41
:1
7

sk
o4
9-
2

[1
2]

49
41
61
78

41
61
78

41
61
78

0%
23
:5
9

41
61
78

41
61
78

0%
1:
49
:5
1

12
:3
5

1:
43
:3
4

sk
o4
9-
3

[1
2]

49
32
45
12

32
45
12

32
45
12

0%
25
:4
6

32
45
12

32
45
12

0%
1:
51
:5
9

33
.1

1:
37
:5
3

sk
o4
9-
4

[1
2]

49
23
67
55
.5

23
67
55
.5

23
67
55
.5

0%
29
:2
7

23
67
55
.5

23
67
55
.5

0%
1:
43
:0
2

8:
23

1:
39
:4
9

sk
o4
9-
5

[1
2]

49
66
61
43

66
61
43

66
61
43

0%
12
:5
2

66
61
43

66
61
43

0%
1:
08
:2
2

30
.7

1:
08
:2
2

sk
o5
6-
1

[1
2]

56
64
02
4

64
02
4

64
02
4

0%
1:
01
:4
3

64
02
4

64
02

4
0%

3:
56
:1
6

2:
27
:5
0

3:
32
:0
3

sk
o5
6-
2

[1
2]

56
49
65
61

49
65
61

49
65
61

0%
50
:3
4

49
65
61

49
65
61

0%
3:
57
:2
0

0.
3

3:
18
:4
1

sk
o5
6-
3

[1
2]

56
17
04
49

17
03
85
.8
50
4

17
04
49

0.
03
71

%
22
:2
5:
20

17
04
49

17
04
49

0%
30
:2
9:
39

36
:3
0

4:
54
:2
4

sk
o5
6-
4

[1
2]

56
31
33
88

31
33
88

31
33
88

0%
1:
23
:4
6

31
33
88

31
33
88

0%
5:
49
:5
7

30
.8

3:
47
:0
0

sk
o5
6-
5

[1
2]

56
59
22
94
.5

59
22
94
.5

59
22
94
.5

0%
1:
21
:0
7

59
22
94
.5

59
22
94
.5

0%
5:
11
:5
6

25
:3
3

3:
50
:1
0

Ta
bl
e
6.
4:

C
om

pa
ri
so
n
of

(B
V)

an
d
(T
V)

fo
r
m
ed
iu
m
-s
iz
ed

SR
FL

P
in
st
an

ce
s.

T
he

co
lu
m
n
‘B
es
t’

lis
ts

al
l
be

st
kn

ow
n
up

pe
r
bo

un
ds

in
th
e
lit
er
at
ur
e.

‘T
im

e
be

st
’d

en
ot
es

th
e
ti
m
e
re
qu

ir
ed

by
(T
V)

to
fin

d
an

or
de
ri
ng

w
it
h
su
ch

ob
je
ct
iv
e
va
lu
e
(o
r
be

tt
er
).
T
he

la
st

co
lu
m
n
sh
ow

s
af
te
r
w
hi
ch

ti
m
e
(T
V)

im
pr
ov
es

on
th
e
lo
w
er

bo
un

d
co
m
pu

te
d
by

th
e
bu

nd
le

ap
pr
oa
ch

[4
4]
.T

he
ru
nn

in
g
ti
m
es

ar
e
gi
ve
n
in

se
c,

in
m
in
:s
ec

or
h:
m
in
:s
ec

re
sp
ec
ti
ve
ly
.

Computational Results 73

Optimal solutions and significantly reduced gaps for large instances. The family
of ‘sko’ instances introduced in [12] contains yet larger instances with n ∈ {64, 72, 81, 100}.
Additionally, in [6] a set of 20 randomly generated instances with n ∈ {60, 70, 75, 80} was
created. Hungerländer & Rendl [43] restricted the number of function evaluations of the
bundle method for these instances to 250. This time, we set some time limits for our approach
which depend on the instance size and the used version. For instances with n ≤ 81, we allowed
(BV) to run at most two weeks and (TV) to run at most three weeks. For very large instances
with 100 facilities, we actually set the maximum time for (BV) to three weeks and for (TV)
to four weeks. Unfortunately, the computations had to be stopped ahead of schedule due to
an unforeseen maintenance window. Because of this, we cannot provide full computational
results for (TV) on these very large instances, since our data logs were buffered and never
flushed. This resulted in the loss of all buffered parts when the forced abandonment occurred.
However, we can still provide sufficiently good results for (BV) after almost 15 days of running
time.
We can see in Table 6.5 that the bundle approach by Hungerländer & Rendl [44] does not
solve a single instance and rarely finds the best known solution for n ≥ 64. As before, (BV)
computes the same lower bounds in much less time without any exception. It also solves
24 of the 40 instances to proven optimality and finds for all except four instances the best
known solution. In almost all cases where optimality was proven, the overall running time
of (BV) is less than the time required by the bundle approach for performing 250 function
evaluations. For all unsolved instances with n ≤ 80, the gaps are very small and nearly reach
the upper bounds in three cases. The ‘sko’ instances with n = 81 seem to be much harder
than all other instances. (BV) can only solve one of these within the given time limit of
two weeks. However, it significantly reduces the optimality gaps compared to the approach
by Hungerländer & Rendl [44]. The results for the very large instances with n = 100 are
intriguing. Although none of these instances can be solved within 15 days, the gaps are very
small, especially for two instances. Note that the best known solutions were not found for
the other three instances.
Table 6.6 again compares (BV) and (TV) with respect to the considered large instances. (TV)
is capable of solving all but two instances with n ≤ 80. For the two remaining instances, the
gaps compared to (BV) are reduced by factor of 2 or 10 respectively. Moreover, (TV) solves
one additional instance with 81 facilities and reduces the gaps for all unsolved ones. We want
to remark, that our log files indicate that the instance ‘sko-81-4’ most likely would have been
solved with a higher time limit, since the tightness parameter α had a comparatively large
value on termination (see Table 6.7) and the gap still decreased significantly after the last
reduction step. As we can see, (TV) did not improve the lower bounds of (BV) for n = 100.
This is not surprising due to the premature termination, since Table 6.7 will show that α
was at that time never smaller than 10−4.

74 Computational Results

(S
D
P
3
)
w
it
h
bu

nd
le

m
et
ho

d
re
st
ri
ct
ed

(B
V)

to
25
0
fu
nc
ti
on

ev
al
ua

ti
on

s
[4
3]

In
st
an

ce
So

ur
ce

n
B
es
t

L
B

U
B

G
ap

T
im

e
L
B

U
B

G
ap

T
im

e
Im

pr
ov
e
L
B

(S
D
P
3
)

A
K
V
-6
0-
1

[6
]

60
14
77
83
4

14
77
13
4

14
77

83
4

0.
05
%

12
:3
8:
16

14
77
83
1.
55
77

14
77
83

4
0.
00
02
%

5:
41
:3
3

1:
15
:0
6

A
K
V
-6
0-
2

[6
]

60
84
17
76

84
14
72

84
17
76

0.
04

%
11
:0
8:
16

84
17
76

84
17
76

0%
3:
25
:3
5

1:
43
:1
6

A
K
V
-6
0-
3

[6
]

60
64
83
37
.5

64
70
31
.5

64
83
37
.5

0.
20
%

9:
51
:0
6

64
83
37
.5

64
83
37
.5

0%
2:
23
:5
2

1:
34
:0
3

A
K
V
-6
0-
4

[6
]

60
39
84
06

39
79
51

39
84
06

0.
11

%
10
:4
9:
59

39
84
06

39
84
06

0%
3:
05
:2
6

1:
45
:3
3

A
K
V
-6
0-
5

[6
]

60
31
88
05

31
87
92

31
88
05

0.
00
4%

12
:3
9:
37

31
88
05

31
88
05

0%
1:
09
:0
7

1:
06
:3
6

A
K
V
-7
0-
1

[6
]

70
15
28
53
7

15
26
35
9

15
28

56
0

0.
14
%

26
:4
1:
34

15
28
53
7

15
28
53
7

0%
10
:0
2:
44

4:
44
:5
1

A
K
V
-7
0-
2

[6
]

70
14
41
02
8

14
39
12
2

14
41

02
8

0.
13
%

26
:1
1:
27

14
41
02
8

14
41
02
8

0%
7:
15
:1
0

4:
00
:0
1

A
K
V
-7
0-
3

[6
]

70
15
18
99
3.
5

15
17
80
3.
5

15
18
99
3.
5

0.
08
%

26
:1
5:
14

15
18
99
3.
5

15
18
99
3.
5

0%
6:
43
:4
6

3:
14
:2
8

A
K
V
-7
0-
4

[6
]

70
96
87
96

96
73
16

96
91
50

0.
19

%
27
:2
8:
48

96
87
96

96
87
96

0%
5:
59
:0
1

2:
53
:1
8

A
K
V
-7
0-
5

[6
]

70
42
18
00
2.
5

42
13
77
4.
5

42
18
00
2.
5

0.
10
%

28
:1
6:
05

42
17
99
9.
40
03

42
18
00
2.
5

0.
00
01
%

16
:3
2:
28

2:
53
:1
9

A
K
V
-7
5-
1

[6
]

75
23
93
45
6.
5

23
87
59
0.
5

23
93
60
0.
5

0.
25
%

37
:5
7:
53

23
93
45
6.
5

23
93
45
6.
5

0%
31
:4
2:
37

3:
18
:0
8

A
K
V
-7
5-
2

[6
]

75
43
21
19
0

43
09
18
5

43
22

49
2

0.
31
%

39
:2
8:
38

43
20
96
8.
72
61

43
21
19

0
0.
00
51
%

15
9:
23
:3
9

4:
29
:3
0

A
K
V
-7
5-
3

[6
]

75
12
48
42
3

12
43
13
6

12
49

25
1

0.
49
%

38
:2
1:
06

12
48
42
3

12
48
42
3

0%
20
:2
5:
46

4:
05
:0
5

A
K
V
-7
5-
4

[6
]

75
39
41
81
6.
5

39
36
46
0.
5

39
41
84
5.
5

0.
14
%

38
:4
2:
58

39
41
81
6.
5

39
41
81
6.
5

0%
12
:4
7:
31

4:
13
:1
3

A
K
V
-7
5-
5

[6
]

75
17
91
40
8

17
86
15
4

17
91

46
9

0.
30
%

41
:1
0:
37

17
91
40
5.
75
06

17
91
40

8
0.
00
01
%

33
:0
5:
38

4:
06
:3
5

A
K
V
-8
0-
1

[6
]

80
20
69
09
7.
5

20
63
34
6.
5

20
70
39
1.
5

0.
34
%

58
:2
4:
49

20
69
09
7.
5

20
69
09
7.
5

0%
72
:2
7:
53

11
:0
7:
38

A
K
V
-8
0-
2

[6
]

80
19
21
13
6

19
18
94
5

19
21

20
2

0.
12
%

58
:4
7:
15

19
21
13
6

19
21
13
6

0%
72
:1
5:
33

22
:3
2:
59

A
K
V
-8
0-
3

[6
]

80
32
51
36
8

32
45
25
4

32
51

41
3

0.
19
%

58
:1
7:
19

32
51
36
8

32
51
36
8

0%
26
:0
0:
25

8:
18
:1
7

A
K
V
-8
0-
4

[6
]

80
37
46
51
5

37
39
65
7

37
47

82
9

0.
22
%

58
:5
0:
47

37
46
51
5

37
46
51
5

0%
85
:3
7:
47

5:
37
:3
0

A
K
V
-8
0-
5

[6
]

80
15
88
88
5

15
85
49
1

15
90

84
7

0.
34
%

58
:3
0:
30

15
88
88
5

15
88
88
5

0%
37
:3
1:
15

10
:0
2:
13

sk
o-
64
-1

[1
2]

64
96
88
1

96
56
9

97
19
4

0.
65
%

13
:0
8:
05

96
88
1

96
88
1

0%
5:
29
:2
7

1:
57
:3
3

sk
o-
64
-2

[1
2]

64
63
43
32
.5

63
34
20
.5

63
43
32
.5

0.
14
%

14
:2
8:
38

63
43
32
.5

63
43
32
.5

0%
3:
00
:1
0

1:
30
:2
5

sk
o-
64
-3

[1
2]

64
41
43
23
.5

41
28
20
.5

41
43
84
.5

0.
38
%

14
:0
4:
55

41
43
23
.5

41
43
23
.5

0%
9:
54
:0
9

3:
19
:0
2

sk
o-
64
-4

[1
2]

64
29
71
29

29
51
45

29
81
55

1.
02

%
13
:5
5:
45

29
69
25
.2
01
8

29
71

29
0.
06
86
%

56
:4
5:
08

1:
08
:2
5

sk
o-
64
-5

[1
2]

64
50
19
22
.5

50
10
59
.5

50
20
63
.5

0.
20
%

13
:5
3:
04

50
19
22
.5

50
19
22
.5

0%
3:
51
:2
9

2:
08
:5
9

sk
o-
72
-1

[1
2]

72
13
91
50

13
88
85

13
92
31

0.
25

%
29
:3
3:
19

13
91
50

13
91
50

0%
10
:0
0:
24

4:
48
:1
6

sk
o-
72
-2

[1
2]

72
71
19
98

70
76
43

71
56
11

0.
11

%
29
:4
0:
41

71
17
81
.1
34

71
19
98

0.
03
05
%

18
6:
20
:4
5

4:
19
:3
6

sk
o-
72
-3

[1
2]

72
10
54
11
0.
5

10
48
93
0.
5

10
61
76
2.
5

0.
12
%

32
:3
8:
47

10
54
06
3.
70
76

10
54
11
0.
5

0.
00
44
%

11
1:
56
:0
7

2:
46
:0
6

sk
o-
72
-4

[1
2]

72
91
95
86
.5

91
62
29
.5

92
40
19
.5

0.
85
%

33
:5
8:
28

91
95
86
.5

91
95
86
.5

0%
15
:4
2:
28

2:
56
:2
7

sk
o-
72
-5

[1
2]

72
42
82
26
.5

42
62
24
.5

43
02
88
.5

0.
95
%

31
:3
9:
43

42
82
26
.5

42
82
26
.5

0%
15
:5
2:
28

3:
20
:5
5

sk
o-
81
-1

[1
2]

81
20
51
06

20
34
24

20
70
63

1.
79

%
52
:4
4:
10

20
44
61
.4
12
3

20
51

08
0.
31
62
%

33
6:
00
:0
6

5:
39
:2
5

sk
o-
81
-2

[1
2]

81
52
13
91
.5

51
87
11
.5

52
61
57
.5

1.
44
%

59
:5
8:
08

52
13
91
.5

52
13
91
.5

0%
37
:2
3:
17

8:
04
:3
2

sk
o-
81
-3

[1
2]

81
97
07
96

96
28
86

97
92
81

1.
70

%
58
:1
7:
40

96
92
86
.8
87
3

97
07

96
0.
15
57
%

33
6:
00
:0
6

5:
17
:1
1

sk
o-
81
-4

[1
2]

81
20
31
80
3

20
19
05
8

20
35

56
9

0.
82
%

57
:2
1:
49

20
31
49
3.
39
92

20
31
80

3
0.
01
52
%

33
6:
00
:0
7

5:
15
:1
5

sk
o-
81
-5

[1
2]

81
13
02
71
1

12
93
90
5

13
11

16
6

1.
33
%

58
:5
9:
28

13
02
37
7.
70
03

13
02
71

1
0.
02
56
%

33
3:
49
:0
3

4:
26
:3
9

sk
o-
10
0-
1

[1
2]

10
0

37
82
34

37
59
99

38
05
62

1.
21

%
19
1:
47
:2
1

37
81
24
.5
97
9

37
82

35
0.
02
92
%

35
9:
23
:1
9

11
3:
10
:5
8

sk
o-
10
0-
2

[1
2]

10
0

20
76
00
8.
5

20
56
99
7.
5

20
84
92
4.
5

1.
36
%

20
1:
46
:5
2

20
76
00
1.
54
13

20
76
00
8.
5

0.
00
03
%

35
9:
28
:1
1

48
:2
5:
07

sk
o-
10
0-
3

[1
2]

10
0

16
14
55
98
.5

15
98
78
40
.5

16
21
60
76
.5

1.
43
%

21
2:
38
:5
4

16
14
01
48
.2
82
2

16
14
56
14
.5

0.
03
39
%

35
9:
20

:5
2

69
:0
9:
21

sk
o-
10
0-
4

[1
2]

10
0

32
32
52
2

32
00
64
3

32
63

49
3

1.
96
%

20
4:
14
:3
9

32
32
46
5.
23
13

32
32
52

2
0.
00
18
%

35
9:
51
:5
1

60
:5
7:
46

sk
o-
10
0-
5

[1
2]

10
0

10
33
08
0.
5

10
21
58
4.
5

10
40
92
9.
5

1.
89
%

20
1:
29
:2
7

10
31
67
1.
62
20

10
33
10
1.
5

0.
13
86
%

35
9:
52
:2
1

81
:0
7:
09

Ta
bl
e
6.
5:

R
es
ul
ts

of
th
e
bu

nd
le

ap
pr
oa
ch

[4
4]

an
d
(B
V)

fo
r
la
rg
e
SR

FL
P
in
st
an

ce
s.

T
he

co
lu
m
n
‘B
es
t’

lis
ts

al
l
be

st
kn

ow
n
up

pe
r
bo

un
ds

in
th
e

lit
er
at
ur
e.

T
he

la
st

co
lu
m
n
sh
ow

s
af
te
r
w
hi
ch

ti
m
e
(B
V)

im
pr
ov
es

on
th
e
lo
w
er

bo
un

d
co
m
pu

te
d
by

th
e
bu

nd
le

ap
pr
oa
ch

[4
4]
.T

he
ru
nn

in
g
ti
m
es

ar
e

gi
ve
n
in

se
c,

in
m
in
:s
ec

or
h:
m
in
:s
ec

re
sp
ec
ti
ve
ly
.

Computational Results 75

(B
V)

(T
V)

In
st
an

ce
So

ur
ce

n
B
es
t

L
B

U
B

G
ap

T
im

e
L
B

U
B

G
ap

T
im

e
Im

pr
ov
e
L
B

(S
D
P
3
)

A
K
V
-6
0-
1

[6
]

60
14
77
83
4

14
77
83
1.
55
77

14
77

83
4

0.
00
02
%

5:
41
:3
3

14
77
83
4

14
77
83
4

0%
13
:1
4:
51

4:
48
:0
8

A
K
V
-6
0-
2

[6
]

60
84
17
76

84
17
76

84
17
76

0%
3:
25
:3
5

84
17
76

84
17
76

0%
13
:5
4:
38

9:
19
:4
7

A
K
V
-6
0-
3

[6
]

60
64
83
37
.5

64
83
37
.5

64
83
37
.5

0%
2:
23
:5
2

64
83
37
.5

64
83
37
.5

0%
8:
28
:1
0

4:
36
:2
9

A
K
V
-6
0-
4

[6
]

60
39
84
06

39
84
06

39
84
06

0%
3:
05
:2
6

39
84
06

39
84
06

0%
8:
58
:3
1

4:
37
:1
4

A
K
V
-6
0-
5

[6
]

60
31
88
05

31
88
05

31
88
05

0%
1:
09
:0
7

31
88
05

31
88
05

0%
4:
41
:0
3

4:
00
:2
2

A
K
V
-7
0-
1

[6
]

70
15
28
53
7

15
28
53
7

15
28
53
7

0%
10
:0
2:
44

15
28
53
7

15
28
53
7

0%
29
:2
5:
16

9:
48
:2
3

A
K
V
-7
0-
2

[6
]

70
14
41
02
8

14
41
02
8

14
41
02
8

0%
7:
15
:1
0

14
41
02
8

14
41
02
8

0%
46
:1
8:
51

17
:3
0:
35

A
K
V
-7
0-
3

[6
]

70
15
18
99
3.
5

15
18
99
3.
5

15
18
99
3.
5

0%
6:
43
:4
6

15
18
99
3.
5

15
18
99
3.
5

0%
19
:0
1:
52

9:
26
:0
5

A
K
V
-7
0-
4

[6
]

70
96
87
96

96
87
96

96
87
96

0%
5:
59
:0
1

96
87
96

96
87
96

0%
20
:1
7:
55

8:
42
:3
2

A
K
V
-7
0-
5

[6
]

70
42
18
00
2.
5

42
17
99
9.
40
03

42
18
00
2.
5

0.
00
01
%

16
:3
2:
28

42
18
00
2.
5

42
18
00
2.
5

0%
40
:5
2:
33

7:
06
:4
7

A
K
V
-7
5-
1

[6
]

75
23
93
45
6.
5

23
93
45
6.
5

23
93
45
6.
5

0%
31
:4
2:
37

23
93
45
6.
5

23
93
45
6.
5

0%
70
:0
1:
58

11
:2
1:
23

A
K
V
-7
5-
2

[6
]

75
43
21
19
0

43
20
96
8.
72
61

43
21

19
0

0.
00
51
%

15
9:
23
:3
9

43
21
06
3.
23
99

43
21
19

0
0.
00
29
%

50
4:
00
:0
3

12
:5
6:
57

A
K
V
-7
5-
3

[6
]

75
12
48
42
3

12
48
42
3

12
48
42
3

0%
20
:2
5:
46

12
48
42
3

12
48
42
3

0%
41
:3
6:
25

15
:1
4:
41

A
K
V
-7
5-
4

[6
]

75
39
41
81
6.
5

39
41
81
6.
5

39
41
81
6.
5

0%
12
:4
7:
31

39
41
81
6.
5

39
41
81
6.
5

0%
55
:0
3:
22

16
:1
2:
49

A
K
V
-7
5-
5

[6
]

75
17
91
40
8

17
91
40
5.
75
06

17
91

40
8

0.
00
01
%

33
:0
5:
38

17
91
40
8

17
91
40
8

0%
62
:5
2:
51

11
:4
3:
20

A
K
V
-8
0-
1

[6
]

80
20
69
09
7.
5

20
69
09
7.
5

20
69
09
7.
5

0%
72
:2
7:
53

20
69
09
7.
5

20
69
09
7.
5

0%
12
8:
10
:5
7

19
:4
4:
21

A
K
V
-8
0-
2

[6
]

80
19
21
13
6

19
21
13
6

19
21
13
6

0%
72
:1
5:
33

19
21
13
6

19
21
13
6

0%
19

2:
58
:5
9

21
:5
5:
04

A
K
V
-8
0-
3

[6
]

80
32
51
36
8

32
51
36
8

32
51
36
8

0%
26
:0
0:
25

32
51
36
8

32
51
36
8

0%
50
:3
6:
34

19
:5
1:
16

A
K
V
-8
0-
4

[6
]

80
37
46
51
5

37
46
51
5

37
46
51
5

0%
85
:3
7:
47

37
46
51
5

37
46
51
5

0%
29

3:
58
:1
6

66
:2
7:
00

A
K
V
-8
0-
5

[6
]

80
15
88
88
5

15
88
88
5

15
88
88
5

0%
37
:3
1:
15

15
88
88
5

15
88
88
5

0%
13

8:
38
:4
7

26
:3
1:
04

sk
o-
64

-1
[1
2]

64
96
88
1

96
88
1

96
88
1

0%
5:
29
:2
7

96
88
1

96
88
1

0%
20
:0
7:
11

7:
04
:1
0

sk
o-
64

-2
[1
2]

64
63
43
32
.5

63
43
32
.5

63
43
32
.5

0%
3:
00
:1
0

63
43
32
.5

63
43
32
.5

0%
11
:3
4:
38

5:
41
:0
9

sk
o-
64

-3
[1
2]

64
41
43
23
.5

41
43
23
.5

41
43
23
.5

0%
9:
54
:0
9

41
43
23
.5

41
43
23
.5

0%
19
:4
6:
39

7:
30
:4
8

sk
o-
64

-4
[1
2]

64
29
71
29

29
69
25
.2
01
8

29
71
29

0.
06
86
%

56
:4
5:
08

29
71
13
.0
32
5

29
71

29
0.
00
54
%

36
9:
21
:1
1

7:
13
:2
0

sk
o-
64

-5
[1
2]

64
50
19
22
.5

50
19
22
.5

50
19
22
.5

0%
3:
51
:2
9

50
19
22
.5

50
19
22
.5

0%
17
:2
9:
26

10
:2
6:
56

sk
o-
72

-1
[1
2]

72
13
91
50

13
91
50

13
91
50

0%
10
:0
0:
24

13
91
50

13
91
50

0%
91
:2
0:
37

42
:3
1:
27

sk
o-
72

-2
[1
2]

72
71
19
98

71
17
81
.1
34

71
19
98

0.
03
05
%

18
6:
20
:4
5

71
19
98

71
19
98

0%
18
2:
19
:5
6

23
:5
4:
00

sk
o-
72

-3
[1
2]

72
10
54
11
0.
5

10
54
06
3.
70
76

10
54
11
0.
5

0.
00
44
%

11
1:
56
:0
7

10
54
11
0.
5

10
54
11
0.
5

0%
67
:4
5:
48

9:
57
:2
4

sk
o-
72

-4
[1
2]

72
91
95
86
.5

91
95
86
.5

91
95
86
.5

0%
15
:4
2:
28

91
95
86
.5

91
95
86
.5

0%
55
:5
0:
16

15
:0
4:
02

sk
o-
72

-5
[1
2]

72
42
82
26
.5

42
82
26
.5

42
82
26
.5

0%
15
:5
2:
28

42
82
26
.5

42
82
26
.5

0%
73
:2
6:
48

28
:1
4:
14

sk
o-
81

-1
[1
2]

81
20
51
06

20
44
61
.4
12
3

20
51
08

0.
31
62
%

33
6:
00
:0
6

20
46
11
.2
63
8

20
51

35
0.
25
60
%

50
4:
00
:0
7

36
:4
8:
21

sk
o-
81

-2
[1
2]

81
52
13
91
.5

52
13
91
.5

52
13
91
.5

0%
37
:2
3:
17

52
13
91
.5

52
13
91
.5

0%
15
7:
05
:3
4

44
:2
8:
26

sk
o-
81

-3
[1
2]

81
97
07
96

96
92
86
.8
87
3

97
07
96

0.
15
57
%

33
6:
00
:0
6

96
97
67
.2
48
7

97
07

96
0.
10
61
%

50
4:
00
:0
7

38
:5
8:
28

sk
o-
81

-4
[1
2]

81
20
31
80
3

20
31
49
3.
39
92

20
31

80
3

0.
01
52
%

33
6:
00
:0
7

20
31
62
5.
52
96

20
31
80

3
0.
00
87
%

50
4:
00
:0
5

67
:3
9:
41

sk
o-
81

-5
[1
2]

81
13
02
71
1

13
02
37
7.
70
03

13
02

71
1

0.
02
56
%

33
3:
49
:0
3

13
02
71
1

13
02
71
1

0%
34

4:
01
:4
7

19
:2
4:
47

sk
o-
10
0-
1

[1
2]

10
0

37
82
34

37
81
24
.5
97
9

37
82
35

0.
02
92
%

35
9:
23
:1
9

37
71
20
.3
52
6

37
82

51
0.
29
98
%

16
4:
18
:1
8

15
1:
59
:3
5

sk
o-
10
0-
2

[1
2]

10
0

20
76
00

8.
5

20
76
00
1.
54
13

20
76
00
8.
5

0.
00
03
%

35
9:
28
:1
1

20
73
00
4.
12
88

20
76
00
8.
5

0.
14
49
%

23
5:
17
:5
2

53
:1
9:
12

sk
o-
10
0-
3

[1
2]

10
0

16
14
55
98
.5

16
14
01
48
.2
82
2

16
14
56
14
.5

0.
03
39
%

35
9:
20
:5
2

16
12
57
25
.5
47
1

16
14
56
14
.5

0.
12
33
%

33
2:
41
:4
2

79
:4
0:
03

sk
o-
10
0-
4

[1
2]

10
0

32
32
52
2

32
32
46
5.
23
13

32
32

52
2

0.
00
18
%

35
9:
51
:5
1

32
31
54
7.
39
42

32
32
52

2
0.
03
02
%

37
8:
42
:2
2

71
:2
7:
12

sk
o-
10
0-
5

[1
2]

10
0

10
33
08

0.
5

10
31
67
1.
62
20

10
33
10
1.
5

0.
13
86
%

35
9:
52
:2
1

10
30
59
5.
20
21

10
33
10
2.
5

0.
24
33
%

37
7:
11
:4
1

11
2:
16
:4
1

Ta
bl
e
6.
6:

C
om

pa
ri
so
n
of

(B
V)

an
d
(T
V)

fo
r
la
rg
e
SR

FL
P
in
st
an

ce
s.

T
he

co
lu
m
n
‘B
es
t’

lis
ts

al
l
be

st
kn

ow
n
up

pe
r
bo

un
ds

in
th
e
lit
er
at
ur
e.

T
he

la
st

co
lu
m
n
sh
ow

s
af
te
r
w
hi
ch

ti
m
e
(T
V)

im
pr
ov
es

on
th
e
lo
w
er

bo
un

d
co
m
pu

te
d
by

th
e
bu

nd
le

ap
pr
oa
ch

[4
4]
.
T
he

ru
nn

in
g
ti
m
es

ar
e
gi
ve
n
in

se
c,

in
m
in
:s
ec

or
h:
m
in
:s
ec

re
sp
ec
ti
ve
ly
.

76 Computational Results

Analysis of (BV) and (TV). Let us now compare (BV) and (TV) in more detail. First, we
want to remark that (BV) seems to be more numerical stable than (TV) when applied to
large instances. Whereas it rarely happened in (BV), the L-BFGS-B solver aborted its opti-
mization of the dual variables more often in (TV). This mostly happened when the tightness
parameter α took values smaller than 10−4 and was more likely with increasing instance size.
But we also noticed that this behavior is influenced by our enforced minimum number of
function evaluations per iteration in (TV). This can impose too accurate solutions which the
L-BFGS-B solver cannot handle with hundreds of thousands of variables. Our implemented
safeguard against this failure (see Section 5.3) does a decent job and straightforwardly allows
to continue the bounding procedure.
A more comprehensive overview of (BV) and (TV) for large instances is given in Table 6.7. For
each instance, it shows different characteristics of both versions at the moment of termination.
‘Evals’ denotes the total number of function evaluations performed. The columns ‘αmin’ show
the respective smallest value of the tightness parameter α. Table 6.7 also lists in the columns
‘Cuts’ how many cuts were involved in the final relaxation. The subsequent columns divide
the whole number of cuts into the respective number of triangle, pentagonal, heptagonal and
hexagonal inequalities.
We can see in Table 6.7 that the number of function evaluations is the main indicator for
higher running times. It stands out that the ratio of evaluations to running time is typically
much higher in (BV) than in (TV). However, they are nearly equal for very large instances. This
is mainly due to the much more expensive separation routine in (TV) and the different settings
of the L-BFGS-B solver in both versions. Recall that the number of memory corrections for
(BV) is chosen adaptively with respect to the instance size, whereas a fixed value is used
in (TV) (see Section 5.3). On the one hand, this leads, combined with a higher number of
cuts, to a higher computational effort compared to (BV), especially since many more nearly
inactive inequalities are involved in (TV). On the other hand, we observed that it pays of
when other inequalities than triangle and starlike pentagonal inequalities are considered. It
yields much more accurate solutions in this case and allows to solve many more instances to
optimality. Table 6.7 also shows that a significantly higher number of function evaluations
is required as the instance size grows.
Consider now the smallest values of the tightness parameter α in both versions. Actually we
cannot compare (BV) and (TV) directly with respect to α, since their reduction schedules of α
are different, i.e., α attains different values in both versions. However, we can clearly see that
the final value of α is almost always smaller in (BV) when both versions can prove optimality.
Besides the number of memory corrections, this is mainly due to a tighter relaxation in (TV)
by involving and considering more inequalities. We could reproduce this behavior with equal
reduction schedules and found out that (TV) often can prove optimality with higher values of
α than (BV). Note that under all cases where optimality was proven in Table 6.7, the smallest
value of α was about 6.1 · 10−6. We want to remark that an even smaller value of 3.8 · 10−6

was required by (TV) to solve the instance ‘Y-60’. Whenever α attained a yet smaller value,
the lower bound made tiny progress.
Finally, let us consider the respective number of cuts in Table 6.7. Typically, (TV) involves
much more inequalities than (BV). The ratio of triangle to starlike pentagonal inequalities

Computational Results 77

in (BV) is always about 5 : 1. In contrast, there is no clear ratio of triangle to pentagonal
inequalities in (TV), but the numbers are definitely a bit more balanced. There are even
some cases where more pentagonal than triangle inequalities are involved, especially for the
‘sko’ instances. Note that also the number of triangle cuts in (TV) is sometimes smaller than
in (BV). We can also see that always a decent number of heptagonal cuts is used in (TV).
However, except for two instances, only relatively few hexagonal inequalities are involved. We
conclude from this observations with respect to the stronger lower bounds of (TV) compared
to (BV) that the heuristic separation of pentagonal and heptagonal inequalities pays off,
but the hexagonal inequalities presumably have a little contribution to the lower bound
and should be omitted. All in all, (BV) and (TV) both seem to be able to handle different
types of inequalities adequately. Although our adjusted bounding procedure admits a huge
number of inequalities, it still ensures suitable numbers of the respective types, since triangle
inequalities are in general more valuable than pentagonal inequalities and so on.

78 Computational Results

(B
V)

(T
V)

In
st
an

ce
E
va
ls

G
ap

α
m
in

T
im

e
C
ut
s

T
ri
.

P
en
t.

E
va
ls

G
ap

α
m
in

T
im

e
C
ut
s

T
ri
.

P
en
t.

H
ep
t.

H
ex
.

A
K
V
-6
0-
1

80
32
6

0.
00
02
%

1.
2e
-0
5

5:
41
:3
3

84
10
8

10
14
44

16
23

1
12
47
26

0%
3.
1e
-0
5

13
:1
4:
51

23
25
53

11
47
98

79
91
9

37
83
5

1
A
K
V
-6
0-
2

41
51
0

0%
9.
8e
-0
5

3:
25
:3
5

11
57
54

96
63
7

19
11
7

94
57
0

0%
1.
2e
-0
4

13
:5
4:
38

17
94
63

91
53
0

41
79
6

45
98
4

15
3

A
K
V
-6
0-
3

28
20
6

0%
9.
8e
-0
5

2:
23
:5
2

93
42
3

70
51
6

22
90
7

52
20
8

0%
1.
2e
-0
4

8:
28
:1
0

18
38
66

80
14
7

50
21
3

52
58
6

92
0

A
K
V
-6
0-
4

33
07
2

0%
6.
1e
-0
6

3:
05
:2
6

15
78
00

11
67
15

41
08
5

53
80
8

0%
7.
6e
-0
6

8:
58
:3
1

38
36
85

22
84
15

12
20
36

23
22
2

10
01
2

A
K
V
-6
0-
5

12
50
9

0%
2.
0e
-0
4

1:
09
:0
7

14
56
66

12
60
32

19
63
4

31
15
0

0%
1.
2e
-0
4

4:
41
:0
3

17
28
86

88
23
3

44
63
0

35
84
5

41
78

A
K
V
-7
0-
1

60
54
5

0%
4.
9e
-0
5

10
:0
2:
44

95
65
3

75
25
8

20
39
5

12
84
27

0%
6.
1e
-0
5

29
:2
5:
16

19
78
90

90
05
3

44
08
8

63
68
7

62
A
K
V
-7
0-
2

42
41
3

0%
9.
8e
-0
5

7:
15
:1
0

13
73
58

10
67
64

30
59
4

10
91
65

0%
2.
4e
-0
4

46
:1
8:
51

19
39
21

12
70
43

25
97
7

40
85
1

50
A
K
V
-7
0-
3

37
04
4

0%
4.
9e
-0
5

6:
43
:4
6

21
80
82

17
46
24

43
45
8

76
33
1

0%
6.
1e
-0
5

19
:0
1:
52

28
59
06

16
26
55

11
05
40

11
91
5

79
6

A
K
V
-7
0-
4

27
13
5

0%
9.
8e
-0
5

5:
59
:0
1

18
69
06

15
28
44

34
06
2

73
48
4

0%
1.
2e
-0
4

20
:1
7:
55

26
56
54

11
48
33

74
59
9

27
66
1

48
56
1

A
K
V
-7
0-
5

10
89
34

0.
00
01
%

1.
2e
-0
5

16
:3
2:
28

16
23
20

12
78
22

20
06
2

20
11
09

0%
7.
6e
-0
6

40
:5
2:
33

18
42
49

15
48
49

23
48
3

58
88

29

A
K
V
-7
5-
1

12
75
90

0%
2.
4e
-0
5

31
:4
2:
37

12
64

14
85
48
0

40
93
4

22
31
80

0%
3.
1e
-0
5

70
:0
1:
58

24
24
81

14
30
02

62
58
6

36
84
3

50
A
K
V
-7
5-
2

50
47
08

0.
00
51
%

1.
9e
-0
7

15
9:
23
:3
9

13
91
89

12
89
32

14
46
7

11
62
55
6

0.
00
29
%

9.
5e
-0
7

50
4:
00
:0
3

27
70
16

21
64
71

48
67
5

11
85
6

14
A
K
V
-7
5-
3

78
26
9

0%
1.
2e
-0
5

20
:2
5:
46

15
06
55

12
35
12

27
14
3

10
84
26

0%
1.
5e
-0
5

41
:3
6:
25

42
24
79

26
94
07

96
77
5

56
23
5

62
A
K
V
-7
5-
4

51
46
9

0%
2.
0e
-0
4

12
:4
7:
31

12
32
58

99
25
8

24
00
0

12
02
15

0%
2.
4e
-0
4

55
:0
3:
22

30
74
95

18
89
74

10
67
63

10
99
1

76
7

A
K
V
-7
5-
5

10
72
52

0.
00
01
%

1.
2e
-0
5

33
:0
5:
38

17
86
38

20
90
84

37
51
6

17
40
94

0%
7.
6e
-0
6

62
:5
2:
51

45
91
59

31
62
42

95
51
4

46
96
0

44
3

A
K
V
-8
0-
1

13
14
54

0%
2.
4e
-0
5

72
:2
7:
53

13
49

02
10
65
36

28
36
6

26
46
25

0%
3.
1e
-0
5

12
8:
10
:5
7

30
15
36

17
46
12

11
25
81

14
31
6

27
A
K
V
-8
0-
2

16
09
70

0%
6.
1e
-0
6

72
:1
5:
33

13
24

21
10
69
14

25
50
7

45
35
80

0%
3.
1e
-0
5

19
2:
58
:5
9

22
16
29

12
00
18

90
40
4

11
19
5

12
A
K
V
-8
0-
3

42
91
8

0%
9.
8e
-0
5

26
:0
0:
25

15
29
44

12
95
36

23
40
8

97
78
4

0%
2.
4e
-0
4

50
:3
6:
34

31
92
00

18
65
48

10
00
76

26
44
4

61
32

A
K
V
-8
0-
4

23
06
53

0%
2.
4e
-0
5

85
:3
7:
47

74
89
0

62
24
1

12
64

9
53
17
59

0%
1.
5e
-0
5

29
3:
58
:1
6

27
07
30

20
59
84

46
33
7

18
39
0

19
A
K
V
-8
0-
5

91
57
6

0%
4.
9e
-0
5

37
:3
1:
15

16
06
85

12
11
37

39
54
8

23
42
80

0%
6.
1e
-0
5

13
8:
38
:4
7

27
80
22

10
76
59

90
81
2

79
14
5

40
6

sk
o-
64

-1
32
96
9

0%
1.
2e
-0
5

5:
29
:2
7

12
55
93

99
42
9

26
16
4

63
90
5

0%
1.
5e
-0
5

20
:0
7:
11

48
30
61

19
73
10

21
49
28

61
31
7

95
06

sk
o-
64

-2
20
62
2

0%
9.
8e
-0
5

3:
00
:1
0

18
21
86

13
30
96

49
09
0

50
92
8

0%
1.
2e
-0
4

11
:3
4:
38

33
54
04

13
35
21

13
37
82

67
76
7

33
4

sk
o-
64

-3
30
87
2

0%
4.
9e
-0
5

9:
54
:0
9

20
64
56

14
71
17

59
33
9

74
74
3

0%
6.
1e
-0
5

19
:4
6:
39

44
01
87

16
89
74

23
33
67

37
33
9

50
7

sk
o-
64

-4
33
41
13

0.
06
86
%

2.
4e
-0
8

56
:4
5:
08

24
44
52

20
52
73

30
90
3

10
56
56
9

0.
00
54
%

2.
4e
-0
7

36
9:
21
:1
1

59
62
34

35
29
60

17
53
27

17
85
2

12
85

sk
o-
64

-5
27
76
5

0%
9.
8e
-0
5

3:
51
:2
9

18
68
40

15
20
64

34
77
6

69
73
7

0%
1.
2e
-0
4

17
:2
9:
26

42
46
57

18
41
98

15
97
35

78
27
0

24
54

sk
o-
72

-1
37
79
1

0%
1.
2e
-0
5

10
:0
0:
24

18
03
18

13
48
69

45
44
9

89
01
5

0%
1.
5e
-0
5

91
:2
0:
37

44
43
19

16
51
37

20
22
54

23
30
9

53
61
9

sk
o-
72

-2
57
93
82

0.
03
05
%

2.
4e
-0
8

18
6:
20
:4
5

25
37
27

19
84
15

35
08
3

41
63
07

0%
1.
5e
-0
5

18
2:
19
:5
6

66
18
09

27
10
00

30
84
49

80
02
0

23
40

sk
o-
72

-3
44
38
32

0.
00
44
%

9.
5e
-0
8

11
1:
56
:0
7

19
71
89

15
98
23

32
14
3

16
84
51

0%
3.
1e
-0
5

67
:4
5:
48

50
29
23

20
30
07

19
29
94

10
63
34

58
8

sk
o-
72

-4
64
61
7

0%
2.
4e
-0
5

15
:4
2:
28

20
52
04

14
48
86

60
31
8

13
89
66

0%
1.
5e
-0
5

55
:5
0:
16

55
78
98

28
11
58

15
92
77

10
72
57

10
20
6

sk
o-
72

-5
59
02
9

0%
1.
2e
-0
5

15
:5
2:
28

18
77
10

15
61
81

31
52
9

16
14
22

0%
6.
1e
-0
5

73
:2
6:
48

62
98
40

27
10
96

28
32
69

62
61
6

12
85
9

sk
o-
81

-1
46
49
43

0.
31
62
%

1.
2e
-0
8

33
6:
00
:0
6

37
80
41

32
18
97

56
14
4

53
59
17

0.
25
60
%

9.
5e
-0
7

50
4:
00
:0
7

82
13

78
39
28
08

39
04
54

36
63
1

14
85

sk
o-
81

-2
75
09
9

0%
1.
2e
-0
5

37
:2
3:
17

24
41
81

20
35
58

40
62
3

22
80
14

0%
1.
5e
-0
5

15
7:
05
:3
4

64
30
00

25
36
24

26
22
26

12
42
76

28
74

sk
o-
81

-3
64
82
93

0.
15
57
%

2.
4e
-0
8

33
6:
00
:0
6

31
53
02

24
72
66

68
03
6

64
42
45

0.
10
61
%

6.
1e
-0
5

50
4:
00
:0
7

66
09

10
28
69
10

32
36
05

49
59
4

80
1

sk
o-
81

-4
56
28
29

0.
01
52
%

9.
5e
-0
8

33
6:
00
:0
7

27
60
71

21
09
43

65
12
8

50
68
82

0.
00
87
%

1.
2e
-0
4

50
4:
00
:0
5

58
28

08
24
52
61

26
03
73

77
06
9

10
5

sk
o-
81

-5
65
49
02

0.
02
56
%

2.
4e
-0
8

33
3:
49
:0
3

28
75
93

24
80
37

39
55
6

50
86
29

0%
1.
5e
-0
5

34
4:
01
:4
7

63
68
93

24
36
57

27
03
31

12
10
17

18
88

sk
o-
10
0-
1

24
04
14

0.
02
92
%

7.
6e
-0
6

35
9:
23
:1
9

12
19
99
8

–
–

10
21
84

0.
29
98
%

1.
2e
-0
4

16
4:
18
:1
8

10
23
05
3

–
–

–
–

sk
o-
10
0-
2

30
04
77

0.
00
03
%

7.
6e
-0
6

35
9:
28
:1
1

75
13
39

–
–

18
99
99

0.
14
49
%

4.
9e
-0
4

23
5:
17
:5
2

62
82

12
–

–
–

–
sk
o-
10
0-
3

30
87
96

0.
03
39
%

1.
2e
-0
4

35
9:
20
:5
2

77
68
86

–
–

29
25
10

0.
12
33
%

2.
0e
-0
3

33
2:
41
:4
2

56
27

12
–

–
–

–
sk
o-
10
0-
4

30
72
33

0.
00
18
%

1.
5e
-0
5

35
9:
51
:5
1

63
89
22

–
–

31
50
14

0.
03
02
%

2.
4e
-0
4

37
8:
42
:2
2

59
47

26
–

–
–

–
sk
o-
10
0-
5

25
93
81

0.
13
86
%

1.
5e
-0
5

35
9:
52
:2
1

10
74
52
1

–
–

28
82
02

0.
24
33
%

1.
2e
-0
4

37
7:
11
:4
1

79
00

59
–

–
–

–

Ta
bl
e
6.
7:

D
et
ai
le
d
co
m
pa

ri
so
n
of

(B
V)

an
d
(T
V)

on
la
rg
e
in
st
an

ce
s.

‘E
va
ls
’
de
no

te
s
th
e
nu

m
be

r
of

fu
nc
ti
on

ev
al
ua

ti
on

s
pe

rf
or
m
ed

an
d
α
m
in

th
e

sm
al
le
st

va
lu
e
of

th
e
ti
gh

tn
es
s
pa

ra
m
et
er
α
.T

he
co
lu
m
n
‘C
ut
s’
sh
ow

s
th
e
nu

m
be

r
of

in
vo
lv
ed

in
eq
ua

lit
ie
s
w
he
n
th
e
co
m
pu

ta
ti
on

w
as

st
op

pe
d,

fo
llo

w
ed

by
th
e
nu

m
be

r
of

cu
ts

of
ea
ch

pa
rt
ic
ul
ar

ty
pe

.A
‘–
’s

ig
n
in
di
ca
te
s
th
at

no
da

ta
is

av
ai
la
bl
e
fo
r
th
e
re
sp
ec
ti
ve

in
st
an

ce
.

Chapter 7

Conclusions and Future Research

In this thesis, we evaluated several lower bounding and exact approaches for the single row
facility layout problem (SRFLP). Moreover, we proposed a new semidefinite approach for
SRFLP that involves much tighter relaxations and a more suitable algorithmic treatment of
these relaxations than all prior approaches. We demonstrated that existing approaches allow
substantial improvement in the sense that stronger and optimal lower bounds, even for large
instances, can be computed in significantly less time.

Review. In Chapter 2, we presented and discussed several LP-based approaches for SRFLP.
We argued that these approaches are only reliable for instances with 40 facilities or less,
and hence, that stronger semidefinite bounds are the most promising solution approach for
large SRFLP instances. Several well-known semidefinite relaxations for SRFLP were deduced
in Chapter 3. We proved that these relaxations are indeed stronger than the corresponding
basic linear relaxations. However, we also revealed many practical issues that arise when
these semidefinite relaxations are solved by standard interior-point methods.
We addressed these complications in Chapter 4, where we presented two algorithmic ap-
proaches based on Lagrangian duality. The first approach by Hungerländer & Rendl [44] led
to a non-smooth optimization problem that is solved by a bundle method. In contrast, we
proposed to use a different approach involving nonstandard semidefinite bounds, leading to
a smooth optimization problem that can be solved efficiently by a quasi-Newton method. We
illustrated that the latter approach is much more efficient from a theoretical point of view
and allows to consider further constraint classes more straightforwardly.
To exploit our proposed algorithmic method, we tightened in Chapter 5 the existing semidef-
inite relaxations with a subset of the so-called pentagonal inequalities that is particularly
suited for SRFLP. Additionally, we suggested two heuristic separation routines for further,
more generic valid inequalities, and some primal heuristics that produce good feasible lay-
outs. We then presented a semidefinite bounding procedure for SRFLP in more detail that
appropriately combines the used algorithmic approach with our new semidefinite relaxations.
We exploited the flexibility of this bounding procedure and established two different versions
which esteem accuracy and computational effort differently. This flexibility is particularly
interesting for a branch-and-bound approach for which we provided preliminary insights,

79

80 Conclusions and Future Research

including some obstacles, as well as useful tools such as branching rules especially designed
for SRFLP.
The computational results in Chapter 6 show that all prior semidefinite approaches were com-
putationally too expensive or produced improvable bounds. We achieved significant progress
by tightening the semidefinite relaxations theoretically and by using a more suited algorith-
mic solution approach. Indeed, our novel approach for SRFLP greatly exceeds our expecta-
tions. We increased the maximum size of successfully solved instances from n = 42 in the
literature to n = 81. This huge improvement is not limited to particular instances and only
a few benchmark instances remain unsolved. Moreover, we significantly improved all best
known duality gaps for large instances with up to 100 facilities and computed the lower
bounds of other approaches in significantly less time. However, there are still many possi-
ble ways to improve our approach and we are excited to apply some of our ideas to other
problems.

Future work. An obvious way to further improve the lower bounds for some unsolved in-
stances is to design a complete branch-and-bound algorithm that uses our novel semidefinite
bounds. We already presented some important ingredients of such an approach in Section
5.4 and showed that appropriate fixations of variables can lead to a substantial speedup of
the bounding procedure. However, the full implementation is not yet finished and a lot of
details still have to be handled.
Moreover, we could further tighten the semidefinite relaxations and make them more consis-
tent by adding suitable subsets of pentagonal or heptagonal inequalities. Analogous to the
starlike pentagonal inequalities, the inclusion of starlike heptagonal inequalities seems to be
a promising idea. Since there are O(n8) of these inequalities, heuristic separation routines
like the ones presented in Section 5.1 should then be used.
Beside possible refinements of the bounding procedure, one could also improve the bound
computation and optimization itself. For example, the expensive linear algebra computations
could be performed on a GPU instead of a CPU. This is especially interesting for very
large-scale instances with more than 100 facilities. Finally, the quasi-Newton solver could be
adapted more specifically for SRFLP, or a second-order semismooth Newton method could be
used instead (see [52]).
We also want to apply the presented approach to other combinatorial problems such as the
quadratic ordering problem or one of its other special cases. To use our approach for this kind
of problems, we only have to adjust the objective function. It could be the case that a branch-
and-bound approach would then be necessary. Especially the weighted betweenness problem
might be an interesting problem to consider as it is a generalization of SRFLP. However, it
can still be modeled as an integer linear program using betweenness variables [41]. Hence, the
starlike pentagonal inequalities would still be a suitable enhancement of existing semidefinite
relaxations. Moreover, we are excited to see how the combination of the bounding procedure
and heuristically separated pentagonal and heptagonal inequalities performs on more general
binary quadratic optimization problems.

Bibliography

[1] André RS Amaral. On the exact solution of a facility layout problem. European Journal
of Operational Research, 173(2):508–518, 2006.

[2] André RS Amaral. Enhanced local search applied to the single-row facility layout
problem. In Proc. XL Brazilian Symp. Oper. Res., pages 1638–1647, 2008.

[3] André RS Amaral. An exact approach to the one-dimensional facility layout problem.
Operations Research, 56(4):1026–1033, 2008.

[4] André RS Amaral. A new lower bound for the single row facility layout problem.
Discrete Applied Mathematics, 157(1):183–190, 2009.

[5] André RS Amaral and Adam N Letchford. A polyhedral approach to the single row
facility layout problem. Mathematical programming, 141(1-2):453–477, 2013.

[6] Miguel F Anjos, Andrew Kennings, and Anthony Vannelli. A semidefinite optimiza-
tion approach for the single-row layout problem with unequal dimensions. Discrete
Optimization, 2(2):113–122, 2005.

[7] Miguel F Anjos and Jean B Lasserre. Handbook on semidefinite, conic and polynomial
optimization, volume 166. Springer Science & Business Media, 2011.

[8] Miguel F Anjos and Anthony Vannelli. Globally optimal solutions for large single-row
facility layout problems. Technical report, Citeseer, 2006.

[9] Miguel F Anjos and Anthony Vannelli. On the computational performance of a semidef-
inite programming approach to single row layout problems. In Operations Research
Proceedings 2005, pages 277–282. Springer, 2006.

[10] Miguel F Anjos and Anthony Vannelli. Computing globally optimal solutions for single-
row layout problems using semidefinite programming and cutting planes. INFORMS
Journal on Computing, 20(4):611–617, 2008.

[11] Miguel F Anjos and Manuel VC Vieira. Mathematical optimization approaches for
facility layout problems: The state-of-the-art and future research directions. European
Journal of Operational Research, 261(1):1–16, 2017.

[12] Miguel F Anjos and Ginger Yen. Provably near-optimal solutions for very large single-
row facility layout problems. Optimization Methods & Software, 24(4-5):805–817, 2009.

81

[13] Soumen Atta and Priya RS Mahapatra. Population-based improvement heuristic with
local search for single-row facility layout problem. Sādhanā, 44(11):222, 2019.

[14] Alexandre Belloni and Claudia Sagastizábal. Dynamic bundle methods: Application to
combinatorial optimization. 2004.

[15] Brian Borchers. CSDP, a C library for semidefinite programming. Optimization methods
and Software, 11(1-4):613–623, 1999.

[16] Brian Borchers and Joseph G Young. Implementation of a primal–dual method for SDP
on a shared memory parallel architecture. Computational Optimization and Applica-
tions, 37(3):355–369, 2007.

[17] Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algorithms for the
quadratic linear ordering problem. INFORMS Journal on Computing, 22(1):168–177,
2010.

[18] Thomas Christof. Low-dimensional 0/1-polytopes and branch-and-cut in combinatorial
optimization. Berichte aus der Informatik. Shaker, Aachen, als ms. gedr. edition, 1997.

[19] Camille Coti, Etienne Leclercq, Frédéric Roupin, and Franck Butelle. Solving 0-1
quadratic problems with two-level parallelization of the BiqCrunch solver. In 2017
Federated Conference on Computer Science and Information Systems (FedCSIS), pages
445–452. IEEE, 2017.

[20] Dilip Datta, André RS Amaral, and José R Figueira. Single row facility layout prob-
lem using a permutation-based genetic algorithm. European Journal of Operational
Research, 213(2):388–394, 2011.

[21] Michel M Deza and Monique Laurent. Geometry of cuts and metrics, volume 15.
Springer, 2009.

[22] Housni Djellab and Michel Gourgand. A new heuristic procedure for the single-row
facility layout problem. International Journal of Computer Integrated Manufacturing,
14(3):270–280, 2001.

[23] Ilse Fischer, Gerald Gruber, Franz Rendl, and Renata Sotirov. Computational experi-
ence with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and
equipartition. Mathematical Programming, 105(2-3):451–469, 2006.

[24] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified NP-
complete problems. In Proceedings of the sixth annual ACM symposium on Theory
of computing, pages 47–63, 1974.

[25] Carl Geiger and Christian Kanzow. Theorie und Numerik restringierter Optimierungs-
aufgaben. Springer-Verlag, 2013.

[26] Michel X Goemans and David P Williamson. .878-approximation algorithms for max
cut and max 2sat. In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, pages 422–431, 1994.

82

[27] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

[28] Martin Grötschel. The sharpest cut: The impact of Manfred Padberg and his work.
SIAM, 2004.

[29] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering
polytope. Mathematical programming, 33(1):43–60, 1985.

[30] Jian Guan and Geng Lin. Hybridizing variable neighborhood search with ant colony
optimization for solving the single row facility layout problem. European Journal of
Operational Research, 248(3):899–909, 2016.

[31] Nicolo Gusmeroli and Angelika Wiegele. EXPEDIS: An exact penalty method over
discrete sets. arXiv preprint arXiv:1912.09739, 2019.

[32] Lawrence H Harper. Optimal assignments of numbers to vertices. Journal of the Society
for Industrial and Applied Mathematics, 12(1):131–135, 1964.

[33] Christoph Helmberg. Semidefinite programming for combinatorial optimization, 2000.

[34] Christoph Helmberg and Krzysztof C Kiwiel. A spectral bundle method with bounds.
Mathematical Programming, 93(2):173–194, 2002.

[35] Christoph Helmberg and Franz Rendl. A spectral bundle method for semidefinite pro-
gramming. SIAM Journal on Optimization, 10(3):673–696, 2000.

[36] Christoph Helmberg and Robert Weismantel. Cutting plane algorithms for semidefinite
relaxations. Fields Institute Communications, 18:197–213, 1998.

[37] Sunderesh S Heragu and Andrew Kusiak. Machine layout problem in flexible manufac-
turing systems. Operations research, 36(2):258–268, 1988.

[38] Sunderesh S Heragu and Andrew Kusiak. Efficient models for the facility layout problem.
European Journal of Operational Research, 53(1):1–13, 1991.

[39] Nicholas J Higham. Computing a nearest symmetric positive semidefinite matrix. Linear
algebra and its applications, 103:103–118, 1988.

[40] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimiza-
tion algorithms I: Fundamentals, volume 305. Springer science & business media, 2013.

[41] Philipp Hungerländer. Semidefinite approaches to ordering problems. PhD thesis, Alpen-
Adria-Universitaet Klagenfurt, 2012.

[42] Philipp Hungerländer. Single-row equidistant facility layout as a special case of single-
row facility layout. International Journal of Production Research, 52(5):1257–1268,
2014.

83

[43] Philipp Hungerländer and Franz Rendl. A computational study and survey of methods
for the single-row facility layout problem. Computational Optimization and Applications,
55(1):1–20, 2013.

[44] Philipp Hungerländer and Franz Rendl. Semidefinite relaxations of ordering problems.
Mathematical Programming, 140(1):77–97, 2013.

[45] Richard M Karp and Michael Held. Finite-state processes and dynamic programming.
SIAM Journal on Applied Mathematics, 15(3):693–718, 1967.

[46] Ravi Kothari and Diptesh Ghosh. Insertion based Lin–Kernighan heuristic for single
row facility layout. Computers & Operations Research, 40(1):129–136, 2013.

[47] Ravi Kothari and Diptesh Ghosh. Tabu search for the single row facility layout problem
using exhaustive 2-opt and insertion neighborhoods. European Journal of Operational
Research, 224(1):93–100, 2013.

[48] Ravi Kothari and Diptesh Ghosh. An efficient genetic algorithm for single row facility
layout. Optimization Letters, 8(2):679–690, 2014.

[49] Ravi Kothari and Diptesh Ghosh. A scatter search algorithm for the single row facility
layout problem. Journal of Heuristics, 20(2):125–142, 2014.

[50] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidefinite bounding
procedure for solving max-cut problems to optimality. Mathematical Programming,
143(1-2):61–86, 2014.

[51] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Computational results of a
semidefinite branch-and-bound algorithm for k-cluster. Computers & Operations Re-
search, 66:153–159, 2016.

[52] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Biqcrunch: A semidefinite
branch-and-bound method for solving binary quadratic problems. ACM Transactions
on Mathematical Software (TOMS), 43(4):1–23, 2017.

[53] K Ravi Kumar, George C Hadjinicola, and Ting-li Lin. A heuristic procedure for the
single-row facility layout problem. European Journal of Operational Research, 87(1):65–
73, 1995.

[54] Lian Kunlei, Zhang Chaoyong, Gaoa Liang, and Shaoa Xinyu. Single row facility lay-
out problem using an imperialist competitive algorithm. In Proceedings from the 41st
International Conference on Computers & Industrial Engineering, 2011.

[55] Monique Laurent and Svatopluk Poljak. On a positive semidefinite relaxation of the
cut polytope. Linear Algebra and its Applications, 223(224):439–461, 1995.

[56] Monique Laurent and Svatopluk Poljak. Gap inequalities for the cut polytope. European
Journal of Combinatorics, 17(2):233 – 254, 1996.

84

[57] Claude Lemaréchal. Lagrangian relaxation. In Computational combinatorial optimiza-
tion, pages 112–156. Springer, 2001.

[58] Weiguo Liu and Anthony Vannelli. Generating lower bounds for the linear arrangement
problem. Discrete applied mathematics, 59(2):137–151, 1995.

[59] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1
optimization. SIAM journal on optimization, 1(2):166–190, 1991.

[60] Robert Love and Jsun Wong. On solving a one-dimensional space allocation problem
with integer programming. INFOR: Information Systems and Operational Research,
14(2):139–143, 1976.

[61] Jérôme Malick. The spherical constraint in Boolean quadratic programs. Journal of
Global Optimization, 39(4):609–622, 2007.

[62] Jérôme Malick and Frédéric Roupin. On the bridge between combinatorial optimization
and nonlinear optimization: a family of semidefinite bounds for 0–1 quadratic problems
leading to quasi-newton methods. Mathematical Programming, 140(1):99–124, 2013.

[63] José L Morales and Jorge Nocedal. Remark on “Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization”. ACM Transactions on
Mathematical Software (TOMS), 38(1):1–4, 2011.

[64] Christopher E Nugent, Thomas E Vollmann, and John Ruml. An experimental com-
parison of techniques for the assignment of facilities to locations. Operations research,
16(1):150–173, 1968.

[65] Takashi Obata. Quadratic assignment problem: evaluation of exact and heuristic algo-
rithms. PhD thesis, 1979.

[66] Marcus Oswald. Weighted consecutive ones problems. PhD thesis, Ruprecht-Karls-
Universität Heidelberg, 2003.

[67] Chao Ou-Yang and Amalia Utamima. Hybrid estimation of distribution algorithm
for solving single row facility layout problem. Computers & Industrial Engineering,
66(1):95–103, 2013.

[68] Gintaras Palubeckis. A branch-and-bound algorithm for the single-row equidistant fa-
cility layout problem. OR spectrum, 34(1):1–21, 2012.

[69] Gintaras Palubeckis. Fast local search for single row facility layout. European Journal
of Operational Research, 246(3):800–814, 2015.

[70] Gintaras Palubeckis. Single row facility layout using multi-start simulated annealing.
Computers & Industrial Engineering, 103:1–16, 2017.

[71] Jean-Claude Picard and Maurice Queyranne. On the one-dimensional space allocation
problem. Operations Research, 29(2):371–391, 1981.

85

[72] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. A branch and bound algorithm
for Max-Cut based on combining semidefinite and polyhedral relaxations. In Inter-
national Conference on Integer Programming and Combinatorial Optimization, pages
295–309. Springer, 2007.

[73] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to optimality
by intersecting semidefinite and polyhedral relaxations. Mathematical Programming,
121(2):307, 2010.

[74] Hamed Samarghandi and Kourosh Eshghi. An efficient tabu algorithm for the single
row facility layout problem. European Journal of Operational Research, 205(1):98–105,
2010.

[75] Hamed Samarghandi, Pouria Taabayan, and Farzad F Jahantigh. A particle swarm opti-
mization for the single row facility layout problem. Computers & Industrial Engineering,
58(4):529–534, 2010.

[76] Sujeevraja Sanjeevi and Kiavash Kianfar. A polyhedral study of triplet formulation for
single row facility layout problem. Discrete Applied Mathematics, 158(16):1861–1867,
2010.

[77] Bhaba R Sarker. The amoebic matrix and one-dimensional machine location problems.
ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–Texas A&M University.

[78] Donald M Simmons. One-dimensional space allocation: an ordering algorithm. Opera-
tions Research, 17(5):812–826, 1969.

[79] Donald M Simmons. A further note on one-dimensional space allocation. Operations
Research, 19(1):249–249, 1971.

[80] Maghsud Solimanpur, Prem Vrat, and Ravi Shankar. An ant algorithm for the single row
layout problem in flexible manufacturing systems. Computers & Operations Research,
32(3):583–598, 2005.

[81] JK Suryanarayanan, Bruce L Golden, and Qi Wang. A new heuristic for the linear
placement problem. Computers & operations research, 18(3):255–262, 1991.

[82] Albert W Tucker. On directed graphs and integer programs. In Symposium on Combi-
natorial Problems, Princeton University, 1960.

[83] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of semidefi-
nite programming: theory, algorithms, and applications, volume 27. Springer Science &
Business Media, 2012.

[84] Daniel H Younger. Minimum feedback arc sets for a directed graph. IEEE Transactions
on Circuit Theory, 10(2):238–245, 1963.

[85] Junfang Yu and Bhaba R Sarker. Directional decomposition heuristic for a linear
machine-cell location problem. European Journal of Operational Research, 149(1):142–
184, 2003.

86

[86] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM
Transactions on Mathematical Software (TOMS), 23(4):550–560, 1997.

87

	Introduction
	Preliminaries
	Semidefinite matrices
	Semidefinite programming
	Lagrangian relaxation

	Linear Programming based Approaches for SRFLP
	Intuitive mixed 0-1 LP formulations
	The distance polytope for SRFLP
	Betweenness-based approach
	Discussion on LP-based approaches for SRFLP

	Semidefinite Relaxations for SRFLP
	A bivalent quadratic formulation
	Semidefinite relaxations
	Performance of interior-point methods for SRFLP

	Practical Solution Methods based on Lagrangian Relaxation
	A bundle method approach
	A regularized approach
	Comparison of the methods

	A Novel Approach for SRFLP
	A considerably improved relaxation
	Primal heuristics
	Outline of the implementation
	Towards a branch-and-bound approach

	Computational Results
	Conclusions and Future Research
	Bibliography

