

September 2, 2021

A Semidefinite Approach for the Single Row Facility Layout Problem

Outline

- Master's thesis: "Solution Approaches for the Single Row Facility Layout Problem based on Semidefinite Programming"
- TU Dortmund
- Supervisor: Prof. Dr. Anja Fischer

Outline

- Master's thesis: "Solution Approaches for the Single Row Facility Layout Problem based on Semidefinite Programming"
- TU Dortmund
- Supervisor: Prof. Dr. Anja Fischer

- Single Row Facility Layout Problem
- Best Exact Approaches in the Literature
- 3 A New Semidefinite Approach
- 4 Results

Given:

- ullet n one-dimensional facilities $[n]:=\{1,\ldots,n\}$
- lengths $\ell_i \in \mathbb{Z}_+$, $i \in [n]$
- pairwise weights $c_{ij} \in \mathbb{Z}_+$, $i, j \in [n]$, i < j

Given:

- n one-dimensional facilities $[n] := \{1, \dots, n\}$
- lengths $\ell_i \in \mathbb{Z}_+$, $i \in [n]$
- pairwise weights $c_{ij} \in \mathbb{Z}_+$, $i, j \in [n], i < j$

Goal:

find a permutation $\pi \in \Pi_n$ of the facilities minimizing the total weighted sum of center-to-center distances d_{ij}^{π} between all pairs of facilities:

$$\min_{\pi \in \Pi_n} \sum_{i,j \in [n], \ i < j} c_{ij} d_{ij}^{\pi}$$

Given:

- n one-dimensional facilities $[n] := \{1, \ldots, n\}$
- lengths $\ell_i \in \mathbb{Z}_+$, $i \in [n]$
- pairwise weights $c_{ij} \in \mathbb{Z}_+$, $i,j \in [n], \ i < j$

Goal:

find a permutation $\pi \in \Pi_n$ of the facilities minimizing the total weighted sum of center-to-center distances d_{ij}^{π} between all pairs of facilities:

$$\begin{array}{c|c} \min\limits_{\pi \in \Pi_n} \sum\limits_{i,j \in [n], \ i < j} c_{ij} d_{ij}^{\pi} \\ \hline d_{12} \\ \hline 1 \\ \hline d_1 \\ \hline \ell_1 \\ \end{array} \qquad \begin{array}{c} 2 \\ \hline \ell_2 \\ \end{array}$$

Given:

- n one-dimensional facilities $[n] := \{1, \ldots, n\}$
- lengths $\ell_i \in \mathbb{Z}_+$, $i \in [n]$
- pairwise weights $c_{ij} \in \mathbb{Z}_+$, $i, j \in [n]$, i < j

Goal: find a permutation $\pi \in \Pi_n$ of the facilities minimizing the total weighted sum of center-to-center distances d_{ij}^{π} between all pairs of facilities:

$$\begin{array}{c|c} \min\limits_{\pi\in\Pi_n} \sum\limits_{i,j\in[n],\;i< j} c_{ij}d_{ij}^{\pi} \\ \hline d_{12} \\ \hline 1 & 3 & 2 \\ \hline \ell_1 & \ell_3 & \ell_2 \end{array}$$

- ullet strongly \mathcal{NP} -hard
- many applications (e.g., in manufacturing systems)

Betweenness variables:

$$b_{ikj} = \begin{cases} 1, & \text{if } k \text{ lies between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}, \quad k \neq i < j \neq k$$

Betweenness variables:

$$b_{ikj} = \begin{cases} 1, & \text{if } k \text{ lies between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}, \quad k \neq i < j \neq k$$

• IP formulation with $\mathcal{O}(n^3)$ variables and $\mathcal{O}(n^4)$ linear constraints

$$d_{ij} = \frac{\ell_i + \ell_j}{2} + \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj}$$

Betweenness variables:

$$b_{ikj} = egin{cases} 1, & ext{if } k ext{ lies between } i ext{ and } j \ 0, & ext{otherwise} \end{cases}, \quad k
eq i < j
eq k$$

ullet IP formulation with $\mathcal{O}(n^3)$ variables and $\mathcal{O}(n^4)$ linear constraints

$$d_{ij} = \frac{\ell_i + \ell_j}{2} + \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj}$$

- strong linear relaxation
- $\mathcal{O}(n^6)$ cutting planes
- instances with n = 35 solved using a pure cutting plane approach

Betweenness variables:

$$b_{ikj} = \begin{cases} 1, & \text{if } k \text{ lies between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}, \quad k \neq i < j \neq k$$

ullet IP formulation with $\mathcal{O}(n^3)$ variables and $\mathcal{O}(n^4)$ linear constraints

$$d_{ij} = \frac{\ell_i + \ell_j}{2} + \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj}$$

- strong linear relaxation
- $\mathcal{O}(n^6)$ cutting planes
- instances with n = 35 solved using a pure cutting plane approach
- polyhedral study of the 'betweenness polytope' (see Sanjeevi & Kianfar, 2010)

Betweenness variables:

$$b_{ikj} = \begin{cases} 1, & \text{if } k \text{ lies between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}, \quad k \neq i < j \neq k$$

ullet IP formulation with $\mathcal{O}(n^3)$ variables and $\mathcal{O}(n^4)$ linear constraints

$$d_{ij} = \frac{\ell_i + \ell_j}{2} + \sum_{k \in [n] \setminus \{i,j\}} \ell_k b_{ikj}$$

- strong linear relaxation
- $\mathcal{O}(n^6)$ cutting planes
- instances with n = 35 solved using a pure cutting plane approach
- polyhedral study of the 'betweenness polytope' (see Sanjeevi & Kianfar, 2010)
- simplex method impractical

Semidefinite Formulation

Ordering variables:
$$x_{ij} = \begin{cases} +1, & \text{if } i \text{ left of } j \\ -1, & \text{otherwise} \end{cases}$$
, $i, j \in [n], i < j$

Semidefinite Formulation

Ordering variables:
$$x_{ij} = \begin{cases} +1, & \text{if } i \text{ left of } j \\ -1, & \text{otherwise} \end{cases}$$
, $i, j \in [n], i < j$

Up to a constant, (SRFLP) is equivalent to (see Anjos et al., 2005)

$$\min \sum_{\substack{i,j \in [n] \\ i < j}} \frac{c_{ij}}{2} \left(-\sum_{\substack{k \in [n] \\ k < i}} \ell_k x_{ki} x_{kj} - \sum_{\substack{k \in [n] \\ i < k < j}} \ell_k x_{ik} x_{kj} + \sum_{\substack{k \in [n] \\ k > j}} \ell_k x_{ik} x_{jk} \right)$$

s.t.
$$x_{ij}x_{jk} - x_{ij}x_{ik} - x_{ik}x_{jk} = -1,$$
 $i, j, k \in [n], i < j < k,$ (*) $x_{ij} \in \{-1, 1\},$ $i, j \in [n], i < j.$

Semidefinite Formulation

Ordering variables:
$$x_{ij} = \begin{cases} +1, & \text{if } i \text{ left of } j \\ -1, & \text{otherwise} \end{cases}$$
, $i, j \in [n], i < j$

Up to a constant, (SRFLP) is equivalent to (see Anjos et al., 2005)

$$\min \sum_{\substack{i,j \in [n] \\ i < j}} \frac{c_{ij}}{2} \left(-\sum_{\substack{k \in [n] \\ k < i}} \ell_k x_{ki} x_{kj} - \sum_{\substack{k \in [n] \\ i < k < j}} \ell_k x_{ik} x_{kj} + \sum_{\substack{k \in [n] \\ k > j}} \ell_k x_{ik} x_{jk} \right)$$

s.t.
$$x_{ij}x_{jk} - x_{ij}x_{ik} - x_{ik}x_{jk} = -1,$$
 $i, j, k \in [n], i < j < k,$ (*) $x_{ij} \in \{-1, 1\},$ $i, j \in [n], i < j.$

Semidefinite lifting up to the symmetric matrix space:

$$\min\left\{\left\langle C,X\right\rangle :X\text{ satisfies }\left(\ast\right),\text{ }\operatorname{diag}(X)=e,\text{ }X\succeq0,\text{ }\operatorname{rank}(X)=1\right\} ,$$

where $X = xx^{\top}$ with entries $X_{ii,kl} = x_{ii}x_{kl}$.

$$\min \left\{ \langle C, X \rangle : X \text{ satisfies } (*), \text{ diag}(X) = e, X \succeq 0 \right\}$$
 (SDP₀)

• matrix variable of order $\binom{n}{2}$, $\mathcal{O}(n^3)$ linear equations

$$\min\left\{\left\langle C,X\right\rangle :X\text{ satisfies }\left(\ast\right),\text{ }\mathrm{diag}(X)=e,\text{ }X\succeq0\right\} \tag{SDP}_{0})$$

- matrix variable of order $\binom{n}{2}$, $\mathcal{O}(n^3)$ linear equations
- $\mathcal{O}(n^6)$ triangle inequalities can be added as cutting planes:

$$X_{i,j} + X_{i,k} + X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$X_{i,j} - X_{i,k} - X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$-X_{i,j} + X_{i,k} - X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$-X_{i,j} - X_{i,k} + X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$\min\left\{\langle C,X\rangle:X\text{ satisfies }(*)\,,\ \operatorname{\mathsf{diag}}(X)=e,\ X\succeq 0\right\} \tag{\mathsf{SDP}}_0)$$

- matrix variable of order $\binom{n}{2}$, $\mathcal{O}(n^3)$ linear equations
- $\mathcal{O}(n^6)$ triangle inequalities can be added as cutting planes:

$$\begin{aligned} X_{i,j} + X_{i,k} + X_{j,k} &\ge -1, & 1 \le i < j < k \le \binom{n}{2} \\ X_{i,j} - X_{i,k} - X_{j,k} &\ge -1, & 1 \le i < j < k \le \binom{n}{2} \\ -X_{i,j} + X_{i,k} - X_{j,k} &\ge -1, & 1 \le i < j < k \le \binom{n}{2} \\ -X_{i,j} - X_{i,k} + X_{j,k} &\ge -1, & 1 \le i < j < k \le \binom{n}{2} \end{aligned}$$

• interior-point methods (IPMs) require $\mathcal{O}(n^9)$ time to solve (SDP₀)

$$\min\left\{\langle C,X\rangle:X\text{ satisfies }(*),\text{ }\mathrm{diag}(X)=e,\text{ }X\succeq0\right\} \tag{SDP}_0)$$

- matrix variable of order $\binom{n}{2}$, $\mathcal{O}(n^3)$ linear equations
- $\mathcal{O}(n^6)$ triangle inequalities can be added as cutting planes:

$$X_{i,j} + X_{i,k} + X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$X_{i,j} - X_{i,k} - X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$-X_{i,j} + X_{i,k} - X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

$$-X_{i,j} - X_{i,k} + X_{j,k} \ge -1, \qquad 1 \le i < j < k \le \binom{n}{2}$$

- interior-point methods (IPMs) require $\mathcal{O}(n^9)$ time to solve (SDP₀)
- Hungerländer & Rendl (2012, 2013):
 - additional 'matrix cuts'
 - partial Lagrangian approach

 - instances with $n \le 42$ solved

 $\bullet \ \mathcal{O}(\mathit{n}^{10}) \ \text{pentagonal inequalities} \ \sum_{1 \leq i < j \leq 5} \delta_i \delta_j X_{\mathit{p}_i,\mathit{p}_j} \geq -2, \ \ \delta_k \in \{\pm 1\}$

- $\bullet \ \mathcal{O}(\mathit{n}^{10}) \ \text{pentagonal inequalities} \ \sum_{1 \leq i < j \leq 5} \delta_i \delta_j X_{p_i,p_j} \geq -2, \ \ \delta_k \in \{\pm 1\}$
- for six distinct facilities $i, j, k, l, m, r \in [n]$, we call any pentagonal inequality with row indices

'starlike pentagonal inequality'

- $\mathcal{O}(n^{10})$ pentagonal inequalities $\sum_{1 \leq i < j \leq 5} \delta_i \delta_j X_{\rho_i, \rho_j} \geq -2, \quad \delta_k \in \{\pm 1\}$
- for six distinct facilities $i, j, k, l, m, r \in [n]$, we call any pentagonal inequality with row indices

'starlike pentagonal inequality'

- $\mathcal{O}(n^{10})$ pentagonal inequalities $\sum_{1 \leq i < j \leq 5} \delta_i \delta_j X_{\rho_i, \rho_j} \geq -2, \quad \delta_k \in \{\pm 1\}$
- for six distinct facilities $i, j, k, l, m, r \in [n]$, we call any pentagonal inequality with row indices

'starlike pentagonal inequality'

Proposition

The semidefinite relaxation ($SDP_{\mathcal{P}^*}$) is at least as strong as the linear relaxation of the betweenness approach.

- $\mathcal{O}(n^{10})$ pentagonal inequalities $\sum_{1 \leq i < j \leq 5} \delta_i \delta_j X_{\rho_i, \rho_j} \geq -2, \quad \delta_k \in \{\pm 1\}$
- for six distinct facilities $i, j, k, l, m, r \in [n]$, we call any pentagonal inequality with row indices

'starlike pentagonal inequality'

Proposition

The semidefinite relaxation ($SDP_{\mathcal{P}^*}$) is at least as strong as the linear relaxation of the betweenness approach.

 heuristic separation for general pentagonal, hexagonal, and heptagonal inequalities

$$\min\left\{\langle C,X\rangle:\mathcal{A}(X)\leq e,\ \mathcal{B}(X)=e,\ X\succeq 0\right\} \tag{SDP}$$

$$\min\left\{\left\langle C,X\right\rangle :\mathcal{A}(X)\leq e,\ \mathcal{B}(X)=e,\ X\succeq 0\right\} \tag{SDP}$$

BiqCrunch bounding routine (see Krislock et al., 2017): for decreasing penalty parameter $\alpha>0$, approximately solve the regularized dual problem

$$\begin{aligned} \sup & \left\{ -e^{\top}\lambda - e^{\top}\mu - \frac{\alpha}{2}\binom{n}{2}^2 - \frac{1}{2\alpha} \left\| \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-} \right\|_F^2 \right\} \\ \text{s.t.} & \lambda \geq 0, \ \mu \text{ free} \end{aligned}$$
 (DSDP_{\alpha})

- $\mathcal{A}^{\top}(\cdot)$, $\mathcal{B}^{\top}(\cdot)$: adjoint operators
- \bullet [\cdot]_: projection onto the cone of negative semidefinite matrices
- $\|\cdot\|_F$: Frobenius norm

$$\min \left\{ \langle C, X \rangle : \mathcal{A}(X) \le e, \ \mathcal{B}(X) = e, \ X \succeq 0 \right\} \tag{SDP}$$

BiqCrunch bounding routine (see Krislock et al., 2017): for decreasing penalty parameter $\alpha>0$, approximately solve the regularized dual problem

$$\begin{aligned} \sup & \left\{ -e^{\top}\lambda - e^{\top}\mu - \frac{\alpha}{2}\binom{n}{2}^2 - \frac{1}{2\alpha} \left\| \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-} \right\|_F^2 \right\} \\ \text{s.t.} & \lambda \geq 0, \ \mu \text{ free} \end{aligned}$$
 (DSDP_{\alpha})

- $\mathcal{A}^{\top}(\cdot)$, $\mathcal{B}^{\top}(\cdot)$: adjoint operators
- \bullet [\cdot]_: projection onto the cone of negative semidefinite matrices
- $\|\cdot\|_F$: Frobenius norm
- \bullet (DSDP_{α}) convex optimization problem with bound constraints
- usual SDP bound can be approximated with arbitrary precision

Cutting plane approach:

- L-BFGS-B method can be warm-started
- $X_{\text{approx}} = -\frac{1}{\alpha} \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-}$

Cutting plane approach:

- L-BFGS-B method can be warm-started
- $X_{\text{approx}} = -\frac{1}{\alpha} \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-}$
 - add a few thousand highly violated inequalities
 - triangle inequalities have priority (for fixed $\alpha > 0$)
 - remove inactive inequalities

Cutting plane approach:

- L-BFGS-B method can be warm-started
- $X_{\text{approx}} = -\frac{1}{\alpha} \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-}$
 - add a few thousand highly violated inequalities
 - triangle inequalities have priority (for fixed $\alpha > 0$)
 - remove inactive inequalities

Primal heuristics:

- Goemans-Williamson hyperplane rounding
- repair strategies + 2-opt local search

Cutting plane approach:

- L-BFGS-B method can be warm-started
- $X_{\text{approx}} = -\frac{1}{\alpha} \left[C + \mathcal{A}^{\top}(\lambda) + \mathcal{B}^{\top}(\mu) \right]_{-}$
 - add a few thousand highly violated inequalities
 - triangle inequalities have priority (for fixed $\alpha > 0$)
 - remove inactive inequalities

Primal heuristics:

- Goemans-Williamson hyperplane rounding
- repair strategies + 2-opt local search

Implementation:

- C implementation
- BiqCrunch as template

Solving the (root node) relaxation:

- without heuristic separation
 - outperforms all approaches in the literature
 - solves all benchmark instances with $n \le 56$

Solving the (root node) relaxation:

- without heuristic separation
 - outperforms all approaches in the literature
 - solves all benchmark instances with $n \le 56$
- with heuristic separation + high accuracy settings
 - solves almost all benchmark instances with up to n = 81
 - duality gaps reduced by a factor of 10–1000

Solving the (root node) relaxation:

- without heuristic separation
 - outperforms all approaches in the literature
 - solves all benchmark instances with n < 56
- with heuristic separation + high accuracy settings
 - solves almost all benchmark instances with up to n = 81
 - duality gaps reduced by a factor of 10–1000

Observations:

- typically between 100,000 and 1,000,000 active inequalities
- starlike pentagonal inequalities significantly improve the bounds
- hexagonal inequalities do not pay off

Solving the (root node) relaxation:

- without heuristic separation
 - outperforms all approaches in the literature
 - solves all benchmark instances with n < 56
- with heuristic separation + high accuracy settings
 - solves almost all benchmark instances with up to n = 81
 - duality gaps reduced by a factor of 10–1000

Observations:

- typically between 100,000 and 1,000,000 active inequalities
- starlike pentagonal inequalities significantly improve the bounds
- hexagonal inequalities do not pay off

Future work:

branch-and-bound approach

References

- Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Applied Mathematics, 157(1):183–190 (2009)
- Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. *Discrete* Optimization, 2(2):113–122 (2005)
- Mungerländer, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Computational Optimization and Applications, 55(1):1–20 (2012)
- Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Mathematical Programming, 140(1):77–97 (2013)
- Krislock, N., Malick, J., Roupin, F.: BiqCrunch: A semidefinite branch-and-bound method for solving binary quadratic problems. ACM Transactions on Mathematical Software (TOMS), 43(4):1–23 (2017)
- Sanjeevi, S., Kianfar, K.: A polyhedral study of triplet formulation for single row facility layout problem. *Discrete Applied Mathematics*, 158(16), 1861–1867 (2010)