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Single Row Facility Layout Problem (SRFLP)

Given: n one-dimensional facilities [n] := {1, . . . , n}

lengths `i ∈ Z+, i ∈ [n]

pairwise weights cij ∈ Z+, i , j ∈ [n], i < j

Goal: find a permutation π ∈ Πn of the facilities minimizing the
total weighted sum of center-to-center distances dπij be-
tween all pairs of facilities:

min
π∈Πn

∑
i,j∈[n], i<j

cijd
π
ij

`1

d12

`2`3

1 3 2

strongly NP-hard

many applications (e.g., in manufacturing systems)
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Betweenness Approach (Amaral, 2009)

Betweenness variables:

bikj =

{
1, if k lies between i and j

0, otherwise
, k 6= i < j 6= k

IP formulation with O(n3) variables and O(n4) linear constraints

dij =
`i + `j

2
+

∑
k∈[n]\{i,j}

`kbikj

strong linear relaxation

O(n6) cutting planes

instances with n = 35 solved using a pure cutting plane approach

polyhedral study of the ‘betweenness polytope’ (see Sanjeevi & Kianfar, 2010)

simplex method impractical
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Semidefinite Formulation

Ordering variables: xij =

{
+1, if i left of j

−1, otherwise
, i , j ∈ [n], i < j

Up to a constant, (SRFLP) is equivalent to (see Anjos et al., 2005)

min
∑
i,j∈[n]
i<j

cij
2

−∑
k∈[n]
k<i

`kxkixkj −
∑
k∈[n]
i<k<j

`kxikxkj +
∑
k∈[n]
k>j

`kxikxjk


s.t. xijxjk − xijxik − xikxjk = −1, i , j , k ∈ [n], i < j < k, (∗)

xij ∈ {−1, 1}, i , j ∈ [n], i < j .

Semidefinite lifting up to the symmetric matrix space:

min {〈C ,X 〉 : X satisfies (∗) , diag(X ) = e, X � 0, rank(X ) = 1} ,

where X = xx> with entries Xij,kl = xijxkl .
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Semidefinite Relaxations

min {〈C ,X 〉 : X satisfies (∗) , diag(X ) = e, X � 0} (SDP0)

matrix variable of order
(
n
2

)
, O(n3) linear equations

O(n6) triangle inequalities can be added as cutting planes:

Xi,j + Xi,k + Xj,k ≥ −1, 1 ≤ i < j < k ≤
(
n
2

)
Xi,j − Xi,k − Xj,k ≥ −1, 1 ≤ i < j < k ≤

(
n
2

)
−Xi,j + Xi,k − Xj,k ≥ −1, 1 ≤ i < j < k ≤

(
n
2

)
−Xi,j − Xi,k + Xj,k ≥ −1, 1 ≤ i < j < k ≤

(
n
2

)
interior-point methods (IPMs) require O(n9) time to solve (SDP0)

Hungerländer & Rendl (2012, 2013):

additional ‘matrix cuts’
partial Lagrangian approach
IPMs + bundle method ↪→ nonsmooth optimization
instances with n ≤ 42 solved
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Strengthened Relaxation

O(n10) pentagonal inequalities
∑

1≤i<j≤5

δiδjXpi ,pj ≥ −2, δk ∈ {±1}

for six distinct facilities i , j , k, l ,m, r ∈ [n], we call any pentagonal
inequality with row indices

(i , r), (j , r), (k, r), (l , r), (m, r)

‘starlike pentagonal inequality’

↪→

min 〈C ,X 〉
s.t. Xij,jk − Xij,ik − Xik,jk = −1, i < j < k

diag(X ) = e, X � 0
X ∈M, X ∈ P∗

(SDPP∗)

Proposition

The semidefinite relaxation (SDPP∗) is at least as strong as the linear
relaxation of the betweenness approach.

heuristic separation for general pentagonal, hexagonal, and
heptagonal inequalities
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Algorithmic Approach I

min {〈C ,X 〉 : A(X ) ≤ e, B(X ) = e, X � 0} (SDP)

BiqCrunch bounding routine (see Krislock et al., 2017): for decreasing penalty
parameter α > 0, approximately solve the regularized dual problem

sup

{
−e>λ− e>µ− α

2

(
n
2

)2 − 1
2α

∥∥∥[C +A>(λ) + B>(µ)
]
−

∥∥∥2

F

}
s.t. λ ≥ 0, µ free

(DSDPα)

A>(·), B>(·): adjoint operators

[ · ]−: projection onto the cone of negative semidefinite matrices

‖·‖F : Frobenius norm

(DSDPα) convex optimization problem with bound constraints

objective function differentiable ↪→ L-BFGS-B method

usual SDP bound can be approximated with arbitrary precision
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Algorithmic Approach II

Cutting plane approach:

L-BFGS-B method can be warm-started

Xapprox = − 1
α

[
C +A>(λ) + B>(µ)

]
−

add a few thousand highly violated inequalities
triangle inequalities have priority (for fixed α > 0)
remove inactive inequalities

Primal heuristics:

Goemans-Williamson hyperplane rounding

repair strategies + 2-opt local search

Implementation:

C implementation

BiqCrunch as template

Jan Schwiddessen AAU Klagenfurt, Institut für Mathematik 9
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Results and Future Work

Solving the (root node) relaxation:

without heuristic separation

outperforms all approaches in the literature
solves all benchmark instances with n ≤ 56

with heuristic separation + high accuracy settings

solves almost all benchmark instances with up to n = 81
duality gaps reduced by a factor of 10–1000

Observations:

typically between 100, 000 and 1, 000, 000 active inequalities

starlike pentagonal inequalities significantly improve the bounds

hexagonal inequalities do not pay off

Future work:

branch-and-bound approach
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