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Single Row Facility Layout Problem (SRFLP)

Given: o p one-dimensional facilities [n] == {1,...,n}
@ lengths {; € Z, i € [n]

@ pairwise weights ¢; € Zy, i,j € [n], i <
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Single Row Facility Layout Problem (SRFLP)

Given: ¢ ; one-dimensional facilities [n] == {1,...,n}
@ lengths {; € Z, i € [n]
@ pairwise weights ¢; € Zy, i,j € [n], i <
Goal:  find a permutation 7w € 1, of the facilities minimizing the

total weighted sum of center-to-center distances d be-
tween all pairs of facilities:

min g cid?
well, vy

i,jE€ln], i<j

Jan Schwiddessen AAU Klagenfurt, Institut fiir Mathematik



Single Row Facility Layout Problem (SRFLP)

Given:

Goal:

Jan Schwiddessen

@ n one-dimensional facilities [n] .= {1,...,n}

@ lengths {; € Z, i € [n]

@ pairwise weights ¢; € Zy, i,j € [n], i <

find a permutation 7w € 1, of the facilities minimizing the

total weighted sum of center-to-center distances d be-
tween all pairs of facilities:

min g cid?
nen, L= UV
ij€ln], i<j
di2
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Single Row Facility Layout Problem (SRFLP)

Given: ¢ ; one-dimensional facilities [n] == {1,...,n}
@ lengths {; € Z, i € [n]
@ pairwise weights ¢; € Zy, i,j € [n], i <
Goal:  find a permutation w € I1, of the facilities minimizing the

total weighted sum of center-to-center distances d be-
tween all pairs of facilities:

min g cid?
well, vy

i,jE€ln], i<j
di2
2 /3 £l

@ strongly N'P-hard

@ many applications (e.g., in manufacturing systems)
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Betweenness Approach (Amaral, 2009)

Betweenness variables:

L k£i<jtk

1, if k lies between i and j
bij = i
0, otherwise
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Betweenness Approach (Amaral, 2009)

Betweenness variables:

1, if k lies bet i and j
biij{’ [ ies between J an j7 kti<j4k

0, otherwise

@ IP formulation with O(n®) variables and O(n*) linear constraints

b+ 4
dj = > L 4 Z Ly bi
ke[n\{i.j}
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Betweenness Approach (Amaral, 2009)

Betweenness variables:
1, if k lies between i and j .
bix; = . J, k#i<j#k
0, otherwise

@ IP formulation with O(n®) variables and O(n*) linear constraints

Ui+ 4;
d,'j = 5 L 4 Z ekbikj
ke[n\{i.j}

@ strong linear relaxation
@ O(n®) cutting planes

@ instances with n = 35 solved using a pure cutting plane approach
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Betweenness Approach (Amaral, 2009)

Betweenness variables:
1, if k lies between i and j .
bix; = . J, k#i<j#k
0, otherwise

@ IP formulation with O(n®) variables and O(n*) linear constraints

Ui+ 4;
d,-j: > EA Z ékb,-kj
ke[n\{i.j}

strong linear relaxation

O(n®) cutting planes

@ instances with n = 35 solved using a pure cutting plane approach

polyhedral study of the ‘betweenness polytope’ (see Sanjeevi & Kianfar, 2010)
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Betweenness Approach (Amaral, 2009)

Betweenness variables:
1, if k lies between i and j .
bix; = . J, k#i<j#k
0, otherwise

@ IP formulation with O(n®) variables and O(n*) linear constraints

Ui+ 4;
d,'j = 5 L 4 Z ekbikj
ke[n\{i.j}

strong linear relaxation

O(n®) cutting planes

@ instances with n = 35 solved using a pure cutting plane approach

polyhedral study of the ‘betweenness polytope’ (see Sanjeevi & Kianfar, 2010)

simplex method impractical

Jan Schwiddessen AAU Klagenfurt, Institut fiir Mathematik



Semidefinite Formulation

+1, if i left of j

, Lj€]n], i<j
—1, otherwise j € lnl J

Ordering variables: x;; = {
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Semidefinite Formulation

+1, if i left of

, Lj€]ln], i<j
—1, otherwise j€lnl J

Ordering variables: x;; = {

Up to a constant, (SRFLP) is equivalent to (see Anjos et al., 2005)

min Z % - Z LiexXiXuj — Z LiXiwXuj + Z L Xik Xk

ijE€[n] ke(n] ke[n] ke[n]
i<j k<i i<k<j k>j

St XjXj — XijXik — XikXje = —1, ij,keln], i<j<k, (x)
xj € {-1,1}, i,j€ln], i <j.
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Semidefinite Formulation

+1, if i left of

, Lj€]ln], i<j
—1, otherwise j€lnl J

Ordering variables: x;; = {

Up to a constant, (SRFLP) is equivalent to (see Anjos et al., 2005)

min Z % - Z LiexXiXuj — Z LiXiwXuj + Z L Xik Xk

ijE€[n] ke(n] ke[n] ke[n]
i<j k<i i<k<j k>j

St XjXj — XijXik — XikXje = —1, ij,keln], i<j<k, (x)
xj € {-1,1}, i,j€ln], i <j.

Semidefinite lifting up to the symmetric matrix space:
min {(C, X) : X satisfies (x), diag(X)=e, X =0, rank(X) =1},

where X = xx " with entries Xjj x = x;Xk.
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Semidefinite Relaxations
min {{C, X) : X satisfies (x), diag(X)=e¢e, X = 0} (SDPyg)

@ matrix variable of order (3), O(n?) linear equations
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Semidefinite Relaxations

min {{C, X) : X satisfies (x), diag(X)=e¢e, X = 0} (SDPy)

@ matrix variable of order (3), O(n?) linear equations

@ O(n®) triangle inequalities can be added as cutting planes:

Xij+ Xik + Xjk = =1, Lsi<j<ks()
Xij—Xik— X >—-1, 1<i<j<k<(D)
—Xij+ Xik = Xj = -1, l<i<j<ks=()
“Xij = Xik+ Xp > -1,  1<i<j<k< ()
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Semidefinite Relaxations

min {{C, X) : X satisfies (x), diag(X)=e¢e, X = 0} (SDPy)

@ matrix variable of order (3), O(n?) linear equations

@ O(n®) triangle inequalities can be added as cutting planes:

Xij+ Xik + Xjk = =1, Lsi<j<ks()
Xij—Xik— X >—-1, 1<i<j<k<(D)
—Xij+ Xik = Xj = -1, l<i<j<ks=()
X=Xk Xk > -1, 1<i<j<k< ()

@ interior-point methods (IPMs) require O(n°) time to solve (SDPy)
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Semidefinite Relaxations

min {{C, X) : X satisfies (x), diag(X)=e¢e, X = 0} (SDPy)

@ matrix variable of order (3), O(n?) linear equations

@ O(n®) triangle inequalities can be added as cutting planes:

Xij+ Xk + X > =1, 1<i<j<k<(}
Xij— Xik = Xjk = =1, 1<i<j<k<(3
=Xij+ Xik —Xjk = -1, 1<i<j<k<(3
—Xij— Xik+Xjx =2 -1, 1<i<j<k<(3

@ interior-point methods (IPMs) require O(n°) time to solve (SDPy)
@ Hungerlander & Rendl (2012, 2013):

additional ‘matrix cuts’

partial Lagrangian approach

IPMs + bundle method < nonsmooth optimization
instances with n < 42 solved
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Strengthened Relaxation

@ O(n') pentagonal inequalities Z 6i0jXp, p = —2, 0k € {£1}
1<i<j<5
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Strengthened Relaxation

@ O(n'?) pentagonal inequalities Z 6i0jXp, p = —2, 0k € {£1}
1<i<j<5

o for six distinct facilities /,/, k, [, m, r € [n], we call any pentagonal
inequality with row indices

(i,r), Gy r), (k, 1), (1, 7), (m, )

‘starlike pentagonal inequality’
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Strengthened Relaxation
@ O(n'?) pentagonal inequalities Z 610 Xp p; = =2, 0k € {£1}
1<i<j<5
o for six distinct facilities /,/, k, [, m, r € [n], we call any pentagonal
inequality with row indices
(i,r),(j,r),(k,r),(/,r),(m,r)
‘starlike pentagonal inequality’

min  (C, X)

s.t. Xij,jk — X,'J'7,'k — X,'ka =-1, i<j<k
diag(X)=e, X>0 (SDP-)
XeM, XePp*
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Strengthened Relaxation
@ O(n'?) pentagonal inequalities Z 610 Xp p; = =2, 0k € {£1}
1<i<j<5

o for six distinct facilities /,/, k, [, m, r € [n], we call any pentagonal
inequality with row indices

(i,r), Gy r), (kr), (1 r), (m, r)
‘starlike pentagonal inequality’
min  (C, X)
s.t. X,'J"jk — X,'J'7,'k — X,'ka =-1 i<j< k
diag(X)=e, X =0
XeM, XePp*

The semidefinite relaxation (SDPp~ ) is at least as strong as the linear
relaxation of the betweenness approach.

(SDPp-)
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Strengthened Relaxation
@ O(n'?) pentagonal inequalities Z 610 Xp p; = =2, 0k € {£1}
1<i<j<5

o for six distinct facilities /,/, k, [, m, r € [n], we call any pentagonal
inequality with row indices

(i,r), Gy r), (kr), (1 r), (m, r)
‘starlike pentagonal inequality’
min  (C, X)
s.t. X,'J"jk — X,'J'7,'k — X,'ka =-1 i<j< k
diag(X)=e, X =0
XeM, XePp*

The semidefinite relaxation (SDPp~ ) is at least as strong as the linear
relaxation of the betweenness approach.

(SDPp-)

@ heuristic separation for general pentagonal, hexagonal, and
heptagonal inequalities
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Algorithmic Approach |

min {(C,X) : A(X) < e, B(X) =e, X =0} (SDP)
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Algorithmic Approach |
min {(C,X) : A(X) < e, B(X) =e, X =0} (SDP)

BigCrunch bounding routine (see Krislock et al., 2017): for decreasing penalty
parameter v > 0, approximately solve the regularized dual problem

[C+ AT+ BT (u) _Hi}

m 2
sup {—eTA —elu=50G)" -
st. A>0, ufree
(DSDP,,)
e AT(:), BT(-): adjoint operators
@ [-]_: projection onto the cone of negative semidefinite matrices

@ ||-||¢: Frobenius norm
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Algorithmic Approach |
min {(C,X) : A(X) < e, B(X) =e, X =0} (SDP)

BigCrunch bounding routine (see Krislock et al., 2017): for decreasing penalty
parameter v > 0, approximately solve the regularized dual problem

[C+ AT + BT (1) _Hi}

m2
sup {—eTA —e'u—-50)" -2
st. A>0, pfree
(DSDP,,)
e AT(:), BT(-): adjoint operators

@ [-]_: projection onto the cone of negative semidefinite matrices

||-||z: Frobenius norm

(DSDP,,) convex optimization problem with bound constraints

objective function differentiable < L-BFGS-B method

usual SDP bound can be approximated with arbitrary precision
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Algorithmic Approach I

Cutting plane approach:
@ L-BFGS-B method can be warm-started
° Xapprox = _é I:C + AT()‘) + BT(N‘)]_
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Algorithmic Approach I

Cutting plane approach:
@ L-BFGS-B method can be warm-started
° Xapprox = _é I:C + AT(A) + BT(H‘)]_

e add a few thousand highly violated inequalities
o triangle inequalities have priority (for fixed & > 0)
e remove inactive inequalities
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Algorithmic Approach I

Cutting plane approach:
@ L-BFGS-B method can be warm-started
® Xapprox = = [C+AT(A\) + BT ()] _
e add a few thousand highly violated inequalities
o triangle inequalities have priority (for fixed o > 0)
e remove inactive inequalities
Primal heuristics:

@ Goemans-Williamson hyperplane rounding

@ repair strategies + 2-opt local search
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Algorithmic Approach I

Cutting plane approach:
@ L-BFGS-B method can be warm-started
® Xapprox = = [C+AT(A\) + BT ()] _
e add a few thousand highly violated inequalities
o triangle inequalities have priority (for fixed o > 0)
e remove inactive inequalities
Primal heuristics:

@ Goemans-Williamson hyperplane rounding

@ repair strategies + 2-opt local search

Implementation:
@ C implementation

@ BiqCrunch as template
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Results and Future Work

Solving the (root node) relaxation:
@ without heuristic separation

e outperforms all approaches in the literature
o solves all benchmark instances with n < 56
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Solving the (root node) relaxation:
@ without heuristic separation

e outperforms all approaches in the literature
o solves all benchmark instances with n < 56

@ with heuristic separation + high accuracy settings

e solves almost all benchmark instances with up to n = 81
e duality gaps reduced by a factor of 10-1000
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Results and Future Work

Solving the (root node) relaxation:
@ without heuristic separation

e outperforms all approaches in the literature
o solves all benchmark instances with n < 56

@ with heuristic separation + high accuracy settings

e solves almost all benchmark instances with up to n = 81
e duality gaps reduced by a factor of 10-1000

Observations:
@ typically between 100,000 and 1,000,000 active inequalities
@ starlike pentagonal inequalities significantly improve the bounds

@ hexagonal inequalities do not pay off
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Results and Future Work

Solving the (root node) relaxation:
@ without heuristic separation

e outperforms all approaches in the literature
o solves all benchmark instances with n < 56

@ with heuristic separation + high accuracy settings

e solves almost all benchmark instances with up to n = 81
e duality gaps reduced by a factor of 10-1000

Observations:
@ typically between 100,000 and 1,000,000 active inequalities
@ starlike pentagonal inequalities significantly improve the bounds
@ hexagonal inequalities do not pay off

Future work:

@ branch-and-bound approach
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