

A Mixing Method based Branch-and-Bound Solver for QUBO Problems

Joint work with Valentin Durante Jan Schwiddessen

Quadratic Unconstrained Binary Optimization (QUBO)

Optimization Problem (QUBO)

Given $C \in \mathbb{R}^{n \times n}$, solve

$$\max_{s.t.} x^{\top} Cx$$

$$s.t. x \in \{-1, 1\}^n$$
(QUBO)

- $ightharpoonup \mathcal{NP}$ -hard problem
- ► LP approaches exist only for sparse C

Example:

Max-Cut Problem: $C = \frac{1}{4}L(G)$, where L(G) Laplacian matrix

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{j \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

Solvers for dense C using Semidefinite Programming

Semidefinite Relaxation

We introduce $X := xx^{\top}$:

- ▶ diag(X) = e

- ► *X* ≥ 0
 - ightharpoonup rank(X) = 1

Equivalent formulations

$$\max \quad x^{\top} Cx \qquad \Leftrightarrow$$
 s.t. $x \in \{-1, 1\}^n$

max
$$\langle C, X \rangle$$

s.t. $\operatorname{diag}(X) = e$
 $X \succeq 0$
 $\operatorname{rank}(X) = 1$

Semidefinite Relaxation

We introduce $X := xx^{\top}$:

- $\blacktriangleright x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacktriangleright X \succ 0$
- ightharpoonup diag(X) = e

- ightharpoonup rank(X)=1

Semidefinite relaxation

$$\max_{x \in \{-1,1\}^n} x \in \{-1,1\}^n$$

$$\max_{x \in \{-1,1\}^n} \langle C, X \rangle$$
 s.t.
$$\dim_{x} \langle C, X \rangle$$
 s.t.

- all mentioned solvers: additional 'clique' inequalities
- but competitive implementations possible without inequalities

Low-rank Factorization $X = V^{T}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$

- $ightharpoonup X_{ij} = \mathbf{v}_i^{\top} \mathbf{v}_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} \mathbf{v}_i^{\top} \mathbf{v}_j$
- $ightharpoonup \operatorname{diag}(X) = e \Leftrightarrow \|v_i\|^2 = 1, i = 1, \dots, n$

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$

- $ightharpoonup X_{ij} = v_i^{\top} v_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} v_i^{\top} v_j$

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} \mathbf{v}_{i}^{\top} \mathbf{v}_{j}$$
s.t. $\mathbf{v}_{i} \in \mathcal{S}^{k-1}, \ i = 1, \dots, n$ (SDP-vec)

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$

- $ightharpoonup X_{ij} = v_i^{ op} v_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} v_i^{ op} v_j$
- $ightharpoonup \operatorname{diag}(X) = e \Leftrightarrow ||v_i||^2 = 1, i = 1, \dots, n$

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} \mathbf{v}_{i}^{\top} \mathbf{v}_{j}$$
s.t. $\mathbf{v}_{i} \in \mathcal{S}^{k-1}, i = 1, \dots, n$ (SDP-vec)

 $k > \sqrt{2n}$: (SDP) \Leftrightarrow (SDP-vec) [cf. Pataki, 1998]

Geometric Interpretation

$$v_i^\top v_j = ||v_i|| \cdot ||v_j|| \cdot \cos \angle (v_i, v_j)$$

= \cos \Land (v_i, v_j)

Coordinate Ascent Method

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} v_i^{\top} v_j$$
s.t. $v_i \in \mathcal{S}^{k-1}, i = 1, ..., n$ (SDP-vec)

Coordinate Ascent

We fix all but one vector v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\mathsf{T}} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \measuredangle(\mathbf{g}, \mathbf{v}_i)$$

s.t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1}^{n} c_{ij} v_j = V \cdot c_i$$

Coordinate Ascent Method

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} v_i^{\top} v_j$$
s.t. $v_i \in \mathcal{S}^{k-1}, i = 1, ..., n$ (SDP-vec)

Coordinate Ascent

We fix all but one vector v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\mathsf{T}} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \angle (\mathbf{g}, \mathbf{v}_i)$$

s.t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1}^{n} c_{ij} v_j = V \cdot c_i$$

▶ closed-form solution: $v_i = \frac{g}{\|g\|}$ for $g \neq 0$

Mixing Method

- repeat for v_1, v_2, \ldots, v_n again and again
- ▶ initialize *V* randomly on the unit sphere
- converges to optimal solution with linear rate

- we have to stop the Mixing Method at some point
- ightharpoonup we cannot guarantee that QUBO \leq MM

- we have to stop the Mixing Method at some point
- ightharpoonup we cannot guarantee that QUBO \leq MM

- we have to stop the Mixing Method at some point
- ightharpoonup we cannot guarantee that QUBO \leq MM

- we have to stop the Mixing Method at some point
- ▶ we cannot guarantee that QUBO ≤ MM
- ▶ postprocessing recovers upper bound: QUBO ≤ DMM
- ▶ heuristics provide lower bound: LB ≤ QUBO

- we have to stop the Mixing Method at some point
- we cannot guarantee that QUBO \leq MM
- ▶ postprocessing recovers upper bound: QUBO ≤ DMM
- ▶ heuristics provide lower bound: LB ≤ QUBO

Branch-and-Bound

If DMM > LB, partition QUBO into two smaller subproblems and proceed recursively.

Results and Future Work

- C implementation using Intel MKL
- ▶ tested on many instances with $n \le 100$

Results

- ▶ 100–1000 times more subproblems than other approaches
- ▶ 2–10 times faster than the best approach in the literature

Results and Future Work

- C implementation using Intel MKL
- ▶ tested on many instances with $n \le 100$

Results

- ▶ 100–1000 times more subproblems than other approaches
- ▶ 2-10 times faster than the best approach in the literature

Future Work

- ► tackle larger problems
- use clique inequalities via Lagrangian duality

Results and Future Work

- ► C implementation using Intel MKL
- ▶ tested on many instances with $n \le 100$

Results

- ▶ 100–1000 times more subproblems than other approaches
- ▶ 2–10 times faster than the best approach in the literature

Future Work

- ► tackle larger problems
- use clique inequalities via Lagrangian duality

Thank you!