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Quadratic Unconstrained Binary Optimization (QUBO)

Optimization Problem (QUBO)

Given C € R™" solve

max x' Cx

st. xe{-1,1}" (ERD)

» NP-hard problem

» LP approaches exist only for sparse C

Example:

Max-Cut Problem: C = zL(G), where L(G) Laplacian matrix
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The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights w € RE
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The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights w € RE

Goal: find a maximum cut in G, i.e., an optimal solution of

max Z w;j (MC)

cv
i€S, jeV\S
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The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights w € RE

(MC)
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Solvers for dense C using Semidefinite Programming

BigMac (2010) BigCrunch (2016)
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Semidefinite Relaxation

We introduce X := xx ':

> x'Cx=(C,xx")=(C,X) » X=0

> diag(X) =e » rank(X) =1
max (C, X)
max x' Cx & st. diag(X)=e
st. xe{-1,1}" X >0
rank(X) =1
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Semidefinite Relaxation

We introduce X := xx :

> x'Cx=(C,xx")=(C,X) » X=0

> diag(X) =e > rank(X) =1
Semidefinite relaxation
max (C, X)
max x' Cx < st. diag(X)=e
st. xe{-1,1}" X =0

TamkO—1

» all mentioned solvers: additional ‘clique’ inequalities

» but competitive implementations possible without inequalities
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Low-rank Factorization X = VTV

Factorization of X = 0

X=V'V

for some V = (v1|...|v,) € R with k < n
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Low-rank Factorization X = VTV

Factorization of X = 0

X=V'v
for some V = (v1|...|v,) € R with k < n

> X’J:VITVJ = <C’X>:EI,J 1CUXU_ZI,J 1CUVI vj
> diag(X)=e <& |v[?=1,i=1,...,n
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Low-rank Factorization X = VTV

Factorization of X = 0

X=V'v
for some V = (v1|...|v,) € R with k < n

> X’J:VITVJ = <C’X>:ZI,J 1CUXU_ZI,J 1CUVI vj
> diag(X)=e <& |v[?=1,i=1,...,n

Optimization Problem (SDP-vec)

max Cjvi'v;
Z g (SDP-vec)
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Low-rank Factorization X = VTV

Factorization of X = 0

X=V'v
for some V = (v1|...|v,) € R with k < n

> X’J:VITVJ = <C’X>:ZI,J 1CUXU_ZI,J 1CUVI vj
> diag(X)=e <& |v[?=1,i=1,...,n

Optimization Problem (SDP-vec)

ma Cijv;
* Z i (SDP-vec)

s.t. v;GSk_l, i=1,...,n

» k >+/2n: (SDP) < (SDP-vec) [cf. Pataki, 1998]
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Geometric Interpretation

vil

v = |vill - vl - cos £(vi, v))

= cos £(vj, vj)
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Coordinate Ascent Method

Optimization Problem (SDP-vec)

n
max E Cij v;' vj
ij=1

st. vyeSkl i=1,...,n

Coordinate Ascent

We fix all but one vector v;. (SDP-vec) reduces to

(SDP-vec)

max g'v; = |lg|| - || - cos £(g, v)
st. ||lvi| =1, v; e Rk

where g = > T cjvi =V - ¢
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Coordinate Ascent Method

Optimization Problem (SDP-vec)

n
max E Cij v;' vj

= (SDP-vec)
st. vyeSkl i=1,...,n

Coordinate Ascent

We fix all but one vector v;. (SDP-vec) reduces to

max g'v; = |lg|| - || - cos £(g, v)
st. ||lvi| =1, v; e Rk

where g = > T cjvi =V - ¢

» closed-form solution: v; = ”g—” forg #0
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Mixing Method (wang el al., 2018)
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Mixing Method (wang el al., 2018)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics
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Mixing Method (wang el al., 2018)
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Mixing Method (wang el al., 2018)

Mixing Method

> repeat for vi, v, ..., v, again and again

» initialize V randomly on the unit sphere

> converges to optimal solution with linear rate
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Exact Approach for QUBO

|
QUBO SDP

> we have to stop the Mixing Method at some point
> we cannot guarantee that QUBO < MM
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Exact Approach for QUBO

MM  DSDP
| | |

T T 1
QUBO SDP

> we have to stop the Mixing Method at some point
> we cannot guarantee that QUBO < MM
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Exact Approach for QUBO

MM  DSDP
| | |

T T 1
QUBO SDP

> we have to stop the Mixing Method at some point
> we cannot guarantee that QUBO < MM
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Exact Approach for QUBO

MM  DSDP
| | | | |

| | | T |
LB QUBO SDP DMM

> we have to stop the Mixing Method at some point

> we cannot guarantee that QUBO < MM

> postprocessing recovers upper bound: QUBO < DMM
» heuristics provide lower bound: LB < QUBO
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Exact Approach for QUBO

MM  DSDP
| | | | |

1 1 1 T 1
LB QUBO SDP DMM

> we have to stop the Mixing Method at some point

> we cannot guarantee that QUBO < MM

» postprocessing recovers upper bound: QUBO < DMM
» heuristics provide lower bound: LB < QUBO

Branch-and-Bound

If DMM > LB, partition QUBO into two smaller subproblems and
proceed recursively.
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Results and Future Work

» C implementation using Intel MKL

> tested on many instances with n < 100

» 100-1000 times more subproblems than other approaches
» 2-10 times faster than the best approach in the literature
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» C implementation using Intel MKL

> tested on many instances with n < 100

» 100-1000 times more subproblems than other approaches
» 2-10 times faster than the best approach in the literature

> tackle larger problems

» use clique inequalities via Lagrangian duality

Thank youl
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