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Quadratic Unconstrained Binary Optimization (QUBO)

Optimization Problem (QUBO)

Given C ∈ Rn×n, solve

max x⊤Cx
s.t. x ∈ {−1, 1}n (QUBO)

▶ NP-hard problem
▶ LP approaches exist only for sparse C

Example:

Max-Cut Problem: C = 1
4L(G ), where L(G ) Laplacian matrix
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The (Weighted) Max-Cut Problem

Given: undirected graph G = (V ,E ) with edge weights w ∈ RE
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Goal: find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij (MC)
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Solvers for dense C using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)
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Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X ) = e

▶ X ⪰ 0
▶ rank(X ) = 1

Equivalent formulations

max x⊤Cx

s.t. x ∈ {−1, 1}n
⇔

≤

max ⟨C ,X ⟩
s.t. diag(X ) = e

X ⪰ 0
rank(X ) = 1

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ but competitive implementations possible without inequalities
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Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X ) = e ⇔ ∥vi∥2 = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s.t. vi ∈ Sk−1, i = 1, . . . , n

(SDP-vec)

▶ k >
√

2n: (SDP) ⇔ (SDP-vec) [cf. Pataki, 1998]
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Geometric Interpretation

v⊤i vj = ∥vi∥ · ∥vj∥ · cos∡(vi , vj)
= cos∡(vi , vj)

v1

v2

v3
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Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s.t. vi ∈ Sk−1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one vector vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi )
s.t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0
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Mixing Method (Wang el al., 2018)

v2
v1

v3
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Mixing Method (Wang el al., 2018)

v2
v1

v3

V · c1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9



Mixing Method (Wang el al., 2018)

v2
v1

v3

V ·c1
∥V ·c1∥
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Mixing Method (Wang el al., 2018)

v2

v3

v1

Mixing Method
▶ repeat for v1, v2, . . . , vn again and again
▶ initialize V randomly on the unit sphere
▶ converges to optimal solution with linear rate
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Exact Approach for QUBO

QUBO SDP

MM

▶ we have to stop the Mixing Method at some point
▶ we cannot guarantee that QUBO ≤ MM

▶ postprocessing recovers upper bound: QUBO ≤ DMM
▶ heuristics provide lower bound: LB ≤ QUBO
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Exact Approach for QUBO

QUBO SDP

MM DSDP

DMMLB

▶ we have to stop the Mixing Method at some point
▶ we cannot guarantee that QUBO ≤ MM
▶ postprocessing recovers upper bound: QUBO ≤ DMM
▶ heuristics provide lower bound: LB ≤ QUBO

Branch-and-Bound
If DMM > LB, partition QUBO into two smaller subproblems and
proceed recursively.
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Results and Future Work

▶ C implementation using Intel MKL
▶ tested on many instances with n ≤ 100

Results
▶ 100–1000 times more subproblems than other approaches
▶ 2–10 times faster than the best approach in the literature

Future Work
▶ tackle larger problems
▶ use clique inequalities via Lagrangian duality

Thank you!
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