

Insights: A Mixing Method based Branch-and-Bound Solver for QUBO Problems

Joint work with Valentin Durante

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in
$$\{-1,1\}$$
-variables Given $C \in \mathbb{R}^{n \times n}$, solve
$$\max_{x \in \{-1,1\}^n} x^\top Cx$$
 s. t. $x \in \{-1,1\}^n$. (QUBO)

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in $\{-1,1\}$ -variables Given $C\in\mathbb{R}^{n\times n}$, solve $\max_{x} x^{\top}Cx$ s.t. $x\in\{-1,1\}^n$. (QUBO)

- $\triangleright \mathcal{NP}$ -hard
- ► LP approaches exist only for sparse C
- solver is mainly developed for dense C

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in $\{-1,1\}$ -variables

Given $C \in \mathbb{R}^{n \times n}$, solve

$$\begin{array}{ll} \max & x^\top C x \\ \text{s. t.} & x \in \{-1, 1\}^n. \end{array} \tag{QUBO}$$

- $\triangleright \mathcal{NP}$ -hard
- ► LP approaches exist only for sparse C
- solver is mainly developed for dense C

Example:

Max-Cut Problem: $C = \frac{1}{4}L(G)$, where L(G) Laplacian matrix

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Max-Cut

Find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij}. \tag{MC}$$

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Max-Cut

Find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij}. \tag{MC}$$

Examples I

QUBO in $\{0,1\}$ -variables

$$\max_{x \in \{0,1\}^n} \left\{ x^\top Q x + q^\top x \right\}$$

where $Q \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$.

Examples I

QUBO in $\{0,1\}$ -variables

$$\max_{x \in \{0,1\}^n} \left\{ x^\top Q x + q^\top x \right\}$$

where $Q \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$.

Reformulation in $\{-1,1\}$ -variables

$$\max_{x \in \{-1,1\}^{n+1}} x^{\top} Cx$$

where

$$C := rac{1}{4} egin{bmatrix} e^ op Qe + 2q^ op e & e^ op Q + q^ op \ Qe + q & Q \end{bmatrix}.$$

Examples II

Linearly constrained binary quadratic problem (BQP)

min
$$x^{\top}Qx + q^{\top}x$$

s. t. $Ax = b$ (BQP)
 $x \in \{0,1\}^n$

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Examples II

Linearly constrained binary quadratic problem (BQP)

min
$$x^{\top}Qx + q^{\top}x$$

s. t. $Ax = b$ (BQP)
 $x \in \{0, 1\}^n$

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

For some $C \in \mathbb{R}^{(n+1)\times (n+1)}$, (BQP) is equivalent to

Reformulation (used in BigBin solver)

$$\begin{aligned} & \text{min} \quad x^\top C x \\ & \text{s. t.} \quad x \in \{-1, 1\}^{n+1} \\ & \quad x_0 = 1. \end{aligned}$$

Examples III

Maximum Stable Set Problem

$$\begin{array}{ll} \max & e^{\top} x \\ \text{s. t.} & x_i x_j = 0, \quad \forall ij \in E \\ & x \in \{0, 1\}^n \end{array} \tag{MSSP}$$

Examples III

Maximum Stable Set Problem

$$\begin{array}{ll} \max & e^\top x \\ \text{s. t.} & x_i x_j = 0, \quad \forall ij \in E \\ & x \in \{0,1\}^n \end{array} \tag{MSSP}$$

 \Leftrightarrow

Reformulation of (MSSP)

$$\max \left\{ \frac{n}{2} + \frac{1}{2} e^{\top} x - n \sum_{ij \in E} (x_i + 1)(x_j + 1) \right\}$$

s.t. $x \in \{-1, 1\}^n$

Live demonstration

Live demonstration!

Solvers for dense C using Semidefinite Programming

Solvers for dense C using Semidefinite Programming

We introduce $X := xx^{\top}$:

▶
$$diag(X) = e$$

$$ightharpoonup$$
 rank $(X) = 1$

We introduce $X := xx^{\top}$:

- ightharpoonup diag(X) = e

- ► *X* ≥ 0
 - ightharpoonup rank(X) = 1

Equivalent formulations

$$\max \quad x^{\top} Cx \qquad \Leftrightarrow$$
 s.t. $x \in \{-1, 1\}^n$

max
$$\langle C, X \rangle$$

s.t. $\operatorname{diag}(X) = e$
 $X \succeq 0$
 $\operatorname{rank}(X) = 1$

We introduce $X := xx^{\top}$:

- ightharpoonup diag(X) = e

- ► *X* ≥ 0
 - ightharpoonup rank(X) = 1

Semidefinite relaxation

$$\max \quad x^{\top} Cx \leq \\ \text{s.t.} \quad x \in \{-1, 1\}^n$$

$$\max \quad \langle C, X \rangle$$

s.t.
$$\operatorname{diag}(X) = e$$

$$X \succeq 0$$

$$rank(X) = 1$$

We introduce $X := xx^{\top}$:

- $\blacktriangleright x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacktriangleright X \succ 0$

ightharpoonup diag(X) = e

ightharpoonup rank(X)=1

Semidefinite relaxation

$$\max_{x \in \{-1,1\}^n} x \in \{-1,1\}^n$$

$$\max_{x \in \{-1,1\}^n} \langle C, X \rangle$$
 s.t.
$$\dim_{x} \langle C, X \rangle$$
 s.t.

- all mentioned solvers: additional 'clique' inequalities
- competitive implementations possible without inequalities?!

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$.

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$.

- $ightharpoonup X_{ij} = v_i^{ op} v_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} v_i^{ op} v_j$
- $ightharpoonup \operatorname{diag}(X) = e \Leftrightarrow \|v_i\| = 1, i = 1, \dots, n$

Low-rank Factorization $X = V^{T}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$.

- $ightharpoonup X_{ij} = v_i^{ op} v_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} v_i^{ op} v_j$
- $ightharpoonup \operatorname{diag}(X) = e \Leftrightarrow \|v_i\| = 1, i = 1, \dots, n$

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} \mathbf{v}_{i}^{\top} \mathbf{v}_{j}$$
 (SDP-vec) s. t. $\|\mathbf{v}_{i}\| = 1, \ i = 1, \dots, n$

Low-rank Factorization $X = V^{\top}V$

Factorization of $X \succeq 0$

$$X = V^{\top}V$$

for some $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ with $k \leq n$.

- $ightharpoonup X_{ij} = v_i^{ op} v_j \quad \Rightarrow \quad \langle C, X \rangle = \sum_{i,j=1}^n C_{ij} X_{ij} = \sum_{i,j=1}^n C_{ij} v_i^{ op} v_j$
- $ightharpoonup \operatorname{diag}(X) = e \Leftrightarrow \|v_i\| = 1, i = 1, \dots, n$

Optimization Problem (SDP-vec)

$$\max_{i,j=1} \sum_{i,j=1}^{n} C_{ij} v_{i}^{\top} v_{j}$$
s. t. $||v_{i}|| = 1, i = 1, ..., n$ (SDP-vec)

► (SDP) \Leftrightarrow (SDP-vec) for $k > \sqrt{2n}$ [cf. Pataki, 1998]

Geometric Interpretation

$$v_i^\top v_j = ||v_i|| \cdot ||v_j|| \cdot \cos \angle (v_i, v_j)$$

= \cos \Lambde (v_i, v_j)

Coordinate Ascent Method

Optimization Problem (SDP-vec)

$$\begin{array}{ll} \max & \sum_{i,j=1}^n C_{ij} v_i^\top v_j \\ \text{s. t.} & \|v_i\|=1, \ i=1,\ldots,n \end{array} \tag{SDP-vec}$$

Coordinate Ascent Method

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} v_i^{\top} v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate Ascent

We fix all but one vector v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\top} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \angle(\mathbf{g}, \mathbf{v}_i)$$

s.t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1}^{n} c_{ij} v_j = V \cdot c_i$$

Coordinate Ascent Method

Optimization Problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} C_{ij} v_i^{\top} v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, i = 1, \dots, n$

Coordinate Ascent

We fix all but one vector v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\top} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \angle(\mathbf{g}, \mathbf{v}_i)$$

s.t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1}^{n} c_{ij} v_j = V \cdot c_i$$

▶ closed-form solution: $v_i = \frac{g}{\|g\|}$ for $g \neq 0$

Mixing Method

- repeat for v_1, v_2, \ldots, v_n again and again
- ightharpoonup initialize v_1, \ldots, v_n randomly on the unit sphere

Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input: $C = (c_1 | \dots | c_n) \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(C) = 0$, $k \in \mathbb{N}_{\geq 1}$ **Output:** approximate solution $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ of (SDP-vec)

Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input:
$$C = (c_1 | \dots | c_n) \in \mathbb{R}^{n \times n}$$
 with $\operatorname{diag}(C) = 0$, $k \in \mathbb{N}_{\geq 1}$ **Output:** approximate solution $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ of (SDP-vec)

for
$$i \leftarrow 1$$
 to n **do** $v_i \leftarrow 1$ random vector on the unit sphere S^{k-1} ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a non-degeneracy assumption.

Algorithm: Mixing Method

Algorithm 1: Mixing Method (Wang et al., 2018)

Input:
$$C = (c_1 | \dots | c_n) \in \mathbb{R}^{n \times n}$$
 with $\operatorname{diag}(C) = 0$, $k \in \mathbb{N}_{\geq 1}$ **Output:** approximate solution $V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n}$ of (SDP-vec)

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a non-degeneracy assumption.

- objective value is strictly increasing
- ▶ value increases by $2(\|g\| v_i^\top g)$ for each update $g = V \cdot c_i$

 δ

Let $\delta \in \mathbb{R}_+$ denote the accumulated improvement of the objective during the last execution of the while loop.

 δ

Let $\delta \in \mathbb{R}_+$ denote the accumulated improvement of the objective during the last execution of the while loop.

Function tolerance

- ightharpoonup stop if $\delta < ext{tol_delta_abs}$
- lacktriangle stop if $\delta < exttt{tol_delta_rel} \cdot \left(1 + \left| \langle C, V^\top V \rangle \right| \right)$

 δ

Let $\delta \in \mathbb{R}_+$ denote the accumulated improvement of the objective during the last execution of the while loop.

Function tolerance

- ▶ stop if $\delta < \text{tol_delta_abs}$
- stop if $\delta < \texttt{tol_delta_rel} \cdot (1 + |\langle C, V^\top V \rangle|)$

Step tolerance

- ightharpoonup stop if $\|V_{\text{old}} V_{\text{new}}\|_F < \text{tol_V_abs}$
- lacksquare stop if $\|V_{\mathsf{old}} V_{\mathsf{new}}\|_{F} < \mathsf{tol_V_rel} \cdot (1 + \|V_{\mathsf{old}}\|_{F})$

 δ

Let $\delta \in \mathbb{R}_+$ denote the accumulated improvement of the objective during the last execution of the while loop.

Function tolerance

- ightharpoonup stop if $\delta < ext{tol_delta_abs}$
- ▶ stop if $\delta < \text{tol_delta_rel} \cdot (1 + |\langle C, V^\top V \rangle|)$

Step tolerance

- ▶ stop if $||V_{\text{old}} V_{\text{new}}||_F < \text{tol_V_abs}$
- lacksquare stop if $\|V_{\mathsf{old}} V_{\mathsf{new}}\|_{\mathcal{F}} < \mathsf{tol_V_rel} \cdot (1 + \|V_{\mathsf{old}}\|_{\mathcal{F}})$

We use

- tol_delta_abs = tol_delta_rel = tol_V_abs = 0
- ▶ tol V rel = 0.013

Duality

$$\begin{array}{lll} \max & \langle C, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - C \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$

Duality

$$\begin{array}{lll} \max & \langle C, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - C \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition [Wang et al., 2018],

Assume that $\operatorname{diag}(C) = 0$. If V^* is optimal for (SDP-vec), then the vector $y^* \in \mathbb{R}^n$ with entries $y_i^* = \|V \cdot c_i\|_2$ is optimal for (DSDP).

Duality

$$\begin{array}{lll} \max & \langle C, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - C \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition [Wang et al., 2018]

Assume that $\operatorname{diag}(C) = 0$. If V^* is optimal for (SDP-vec), then the vector $y^* \in \mathbb{R}^n$ with entries $y_i^* = \|V \cdot c_i\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

lacktriangle approximate but non-feasible dual variables: $ilde{y_i} = \| ilde{V} \cdot c_i\|_2$

Duality

$$\begin{array}{lll} \max & \langle C, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - C \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition [Wang et al., 2018]

Assume that $\operatorname{diag}(C) = 0$. If V^* is optimal for (SDP-vec), then the vector $y^* \in \mathbb{R}^n$ with entries $y_i^* = \|V \cdot c_i\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

- lacktriangle approximate but non-feasible dual variables: $ilde{y_i} = \| ilde{V} \cdot c_i\|_2$
- feasible dual variables: $y = \tilde{y} \lambda_{\min} \left(\text{Diag}(\tilde{y}) C \right) e$

Other possibility

We use the dual bound

$$e^{\top}\tilde{y} - n\lambda_{\min}\left(\mathsf{Diag}(\tilde{y}) - C\right).$$

Other possibility

We use the dual bound

$$e^{\top}\tilde{y} - n\lambda_{\min}\left(\mathsf{Diag}(\tilde{y}) - C\right).$$

Better upper bound [Jansson et al., 2007]

Let $\tilde{y} \in \mathbb{R}^n$ and \bar{x} such that $\lambda_{\max}(X) \leq \bar{x}$ for some optimal X of (SDP). Then

$$e^{ op} ilde{y} - \sum_{\lambda_k(\mathsf{Diag}(ilde{y}) - \mathcal{C}) < 0} \lambda_k ar{x}$$

is an upper bound on (SDP).

Other possibility

We use the dual bound

$$e^{\top}\tilde{y} - n\lambda_{\min}\left(\mathsf{Diag}(\tilde{y}) - C\right).$$

Better upper bound [Jansson et al., 2007]

Let $\tilde{y} \in \mathbb{R}^n$ and \bar{x} such that $\lambda_{\max}(X) \leq \bar{x}$ for some optimal X of (SDP). Then

$$e^{ op} ilde{y} - \sum_{\lambda_k(\mathsf{Diag}(ilde{y}) - \mathcal{C}) < 0} \lambda_k ar{x}$$

is an upper bound on (SDP).

- slightly better bounds
- **but**: computing \bar{x} requires another eigenvalue computation

Branch-and-Bound

Branching:

- \triangleright we branch on products X_{ii} (like in BiqMac)
- ▶ branching on $X_{n-1,n}$ results in $C' \in \mathbb{R}^{(n-1)\times(n-1)}$ with entries

$$c'_{ij} = \begin{cases} c_{ij} & 1 \le i, j \le n-1 \\ c_{i,n-1} \pm c_{in} & 1 \le i < n-1, j = n-1 \\ c_{n-1,j} \pm c_{n,j} & i = n-1, 1 \le j < n-1 \\ c_{n-1,n-1} \pm 2c_{n-1,n} + c_{n,n} & i = j = n-1 \end{cases}$$

Branch-and-Bound

Branching:

- we branch on products X_{ij} (like in BiqMac)
- ▶ branching on $X_{n-1,n}$ results in $C' \in \mathbb{R}^{(n-1)\times(n-1)}$ with entries

$$c'_{ij} = \begin{cases} c_{ij} & 1 \le i, j \le n-1 \\ c_{i,n-1} \pm c_{in} & 1 \le i < n-1, j = n-1 \\ c_{n-1,j} \pm c_{n,j} & i = n-1, 1 \le j < n-1 \\ c_{n-1,n-1} \pm 2c_{n-1,n} + c_{n,n} & i = j = n-1 \end{cases}$$

best-first search (largest upper bound)

Branch-and-Bound

Branching:

- we branch on products X_{ij} (like in BiqMac)
- ▶ branching on $X_{n-1,n}$ results in $C' \in \mathbb{R}^{(n-1)\times(n-1)}$ with entries

$$c'_{ij} = \begin{cases} c_{ij} & 1 \le i, j \le n-1 \\ c_{i,n-1} \pm c_{in} & 1 \le i < n-1, j = n-1 \\ c_{n-1,j} \pm c_{n,j} & i = n-1, 1 \le j < n-1 \\ c_{n-1,n-1} \pm 2c_{n-1,n} + c_{n,n} & i = j = n-1 \end{cases}$$

best-first search (largest upper bound)

Bounding:

- primal (lower) bounds via heuristics
- ▶ dual (upper) bounds like discussed before

Branching Example

$$C = \begin{pmatrix} 2 & -1 & 3 & -2 \\ -1 & -1 & 1 & 2 \\ 3 & 1 & 1 & -1 \\ -2 & 2 & -1 & 1 \end{pmatrix}$$

Branching on (2,3) with $X_{23} = x_2 \cdot x_3 = 1$:

$$\begin{pmatrix} 2 & -1+3 & 3 & -2 \\ -1+3 & -1+1+2\cdot 1 & 1 & 2-1 \\ 3 & 1 & 1 & -1 \\ -2 & 2-1 & -1 & 1 \end{pmatrix} \xrightarrow{\text{remove}} C' = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

Branching on (2,3) with $X_{23} = x_2 \cdot x_3 = -1$:

$$\begin{pmatrix} 2 & -1-3 & 3 & -2 \\ -1-3 & -1+1-2\cdot 1 & 1 & 2+1 \\ 3 & 1 & 1 & -1 \\ -2 & 2+1 & -1 & 1 \end{pmatrix} \xrightarrow{\text{remove}} C' = \begin{pmatrix} 2 & -4 & -2 \\ -4 & -2 & 3 \\ -2 & 3 & 1 \end{pmatrix}$$

- ► SDP approaches in literature only use X for branching decision
 - ▶ often: branching on most fractional variable
 - ► some solvers branch in first row/column only

- \triangleright SDP approaches in literature only use X for branching decision
 - often: branching on most fractional variable
 - ▶ some solvers branch in first row/column only

Branching decision based on dual variables

We determine the branching decision (i,j) in $\mathcal{O}(n)$:

- ightharpoonup SDP approaches in literature only use X for branching decision
 - often: branching on most fractional variable
 - ▶ some solvers branch in first row/column only

Branching decision based on dual variables

We determine the branching decision (i, j) in $\mathcal{O}(n)$:

- \triangleright SDP approaches in literature only use X for branching decision
 - often: branching on most fractional variable
 - ▶ some solvers branch in first row/column only

Branching decision based on dual variables

We determine the branching decision (i,j) in $\mathcal{O}(n)$:

- ② Find $j = \operatorname{argmax}_k \{ (y_i + y_k) \cdot f(X_{ik}) \colon |X_{ik}| \le 0.875 \}.$
- ▶ where $f: \{-1,1\} \rightarrow [0,1]$ decreasing in $|X_{ik}|$

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:

solutions found by heuristics (important for pruning)

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:

- solutions found by heuristics (important for pruning)
- branching decision (important for overall efficiency)

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:

- solutions found by heuristics (important for pruning)
- branching decision (important for overall efficiency)
- upper bound (important for pruning and best-first search)

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:

- solutions found by heuristics (important for pruning)
- branching decision (important for overall efficiency)
- upper bound (important for pruning and best-first search)

Early branching

Assumption

Finding an optimal solution with heuristics is easy.

Observation

The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:

- solutions found by heuristics (important for pruning)
- branching decision (important for overall efficiency)
- upper bound (important for pruning and best-first search)

Early branching

Immediately branch if we have done at least 4 iterations of the while loop and we know that the optimal value of (SDP) will be larger than the best known lower bound found by heuristics.

Feature: Variable fixing

Given: Dual feasible solution $Diag(y) - C \succeq 0$ for $C \in \mathbb{R}^{n \times n}$.

Notation

- $ightharpoonup C_{/j}$ denotes matrix C without row j and column j.
- ▶ $y_{/j}$ denotes vector y without entry j.

Feature: Variable fixing

Given: Dual feasible solution $Diag(y) - C \succeq 0$ for $C \in \mathbb{R}^{n \times n}$.

Notation

- $ightharpoonup C_{/j}$ denotes matrix C without row j and column j.
- \triangleright $y_{/j}$ denotes vector y without entry j.

Branching on (1,j) would yield cost matrix $\tilde{C} \in \mathbb{R}^{(n-1)\times (n-1)}$ with $C_{/j} - \tilde{C} = \begin{pmatrix} 0 & \delta^\top \\ \delta & 0 \end{pmatrix}$ for some $\delta \in \mathbb{R}^{n-2}$.

Feature: Variable fixing

Given: Dual feasible solution $Diag(y) - C \succeq 0$ for $C \in \mathbb{R}^{n \times n}$.

Notation

- $ightharpoonup C_{/j}$ denotes matrix C without row j and column j.
- ▶ $y_{/i}$ denotes vector y without entry j.

Branching on (1,j) would yield cost matrix $\tilde{C} \in \mathbb{R}^{(n-1)\times (n-1)}$ with $C_{/j} - \tilde{C} = \begin{pmatrix} 0 & \delta^\top \\ \delta & 0 \end{pmatrix}$ for some $\delta \in \mathbb{R}^{n-2}$.

Lemma

$$ilde{y} \coloneqq y_{/j} + egin{pmatrix} \|\delta\|_1 \\ |\delta_1| \\ \vdots \\ |\delta_{n-2}| \end{pmatrix} ext{ is dual feasible, i.e., } \mathsf{Diag}(ilde{y}) - ilde{C} \succeq 0.$$

Proof.

$$\begin{aligned} \operatorname{Diag}(\tilde{y}) - \tilde{C} &= \operatorname{Diag}\left(y_{/j} + \begin{pmatrix} \|\delta\|_1 \\ |\delta_1| \\ \vdots \\ |\delta_{n-2}| \end{pmatrix}\right) - \left(C_{/j} - \begin{pmatrix} 0 & \delta^\top \\ \delta & 0 \end{pmatrix}\right) \\ &= \operatorname{Diag}\left(y_{/j}\right) + \operatorname{Diag}\left(\begin{pmatrix} \|\delta\|_1 \\ |\delta_1| \\ \vdots \\ |\delta_{n-2}| \end{pmatrix}\right) - C_{/j} + \begin{pmatrix} 0 & \delta^\top \\ \delta & 0 \end{pmatrix} \\ &= \underbrace{\operatorname{Diag}\left(y_{/j}\right) - C_{/j}}_{\geq 0} + \underbrace{\operatorname{Diag}\left(\begin{pmatrix} \|\delta\|_1 \\ |\delta_1| \\ \vdots \\ |\delta_{n-2}| \end{pmatrix}\right) + \begin{pmatrix} 0 & \delta^\top \\ \delta & 0 \end{pmatrix}}_{\geq 0} \geq 0 \end{aligned}$$

▶ bound at current node: $e^{\top}y$

'Free' dual bound if we would branch

Dual bound after branching on (i,j): $e^{\top}\tilde{y} + 2\|\delta\|_1 \pm 2c_{ij}$.

▶ difference of bounds: $-y_j + 2\sum_{k\neq i,j} |c_{jk}| \pm 2c_{ij}$

b bound at current node: $e^{\top}y$

'Free' dual bound if we would branch

Dual bound after branching on (i,j): $e^{\top}\tilde{y} + 2\|\delta\|_1 \pm 2c_{ij}$.

- ▶ difference of bounds: $-y_j + 2\sum_{k\neq i,j} |c_{jk}| \pm 2c_{ij}$
- best scenario: 'free' dual bound worse than best known primal bound

b bound at current node: $e^{\top}y$

'Free' dual bound if we would branch

Dual bound after branching on (i,j): $e^{\top}\tilde{y} + 2\|\delta\|_1 \pm 2c_{ij}$.

- ▶ difference of bounds: $-y_j + 2\sum_{k\neq i,j} |c_{jk}| \pm 2c_{ij}$
- best scenario: 'free' dual bound worse than best known primal bound

How we use it

- check all $\mathcal{O}(n^2)$ candidates in $\mathcal{O}(n^2)$ time
- do usual branching step + additional fixation(s)

▶ bound at current node: $e^{\top}y$

'Free' dual bound if we would branch

Dual bound after branching on (i,j): $e^{\top}\tilde{y} + 2\|\delta\|_1 \pm 2c_{ij}$.

- ▶ difference of bounds: $-y_j + 2\sum_{k\neq i,j} |c_{jk}| \pm 2c_{ij}$
- best scenario: 'free' dual bound worse than best known primal bound

How we use it

- ▶ check all $\mathcal{O}(n^2)$ candidates in $\mathcal{O}(n^2)$ time
- do usual branching step + additional fixation(s)

Issue

Conflict with early branching (no dual feasible solution)!

Algorithm 2: Goemans-Williamson hyperplane rounding

Input:
$$V = (v_1, ..., v_n) \in \mathbb{R}^{k \times n}$$
 (such that $V^{\top}V = X$)
Output: $x \in \{-1, 1\}^n$ (feasible solution for QUBO/Max-Cut)

 $h \leftarrow \text{ random vector on the unit sphere } \mathcal{S}^{k-1};$

for $i \leftarrow 1$ to n do

return x;

Algorithm 2: Goemans-Williamson hyperplane rounding

Input:
$$V = (v_1, ..., v_n) \in \mathbb{R}^{k \times n}$$
 (such that $V^{\top}V = X$)
Output: $x \in \{-1, 1\}^n$ (feasible solution for QUBO/Max-Cut)

 $h \leftarrow \text{ random vector on the unit sphere } \mathcal{S}^{k-1};$

for $i \leftarrow 1$ to n do

$$x_i \leftarrow egin{cases} +1, & ext{if } h^ op v_i \geq 0 \ -1, & ext{otherwise} \end{cases}$$

return x;

▶ local search to improve the solution (one-opt and two-opt)

Algorithm 2: Goemans-Williamson hyperplane rounding

Input:
$$V = (v_1, ..., v_n) \in \mathbb{R}^{k \times n}$$
 (such that $V^{\top}V = X$) **Output:** $x \in \{-1, 1\}^n$ (feasible solution for QUBO/Max-Cut)

 $h \leftarrow \text{ random vector on the unit sphere } \mathcal{S}^{k-1};$

for $i \leftarrow 1$ to n do

$$x_i \leftarrow egin{cases} +1, & ext{if } h^ op v_i \geq 0 \ -1, & ext{otherwise} \end{cases}$$

return x;

- local search to improve the solution (one-opt and two-opt)
- reasonable candidates for local search

Algorithm 2: Goemans-Williamson hyperplane rounding

Input:
$$V = (v_1, ..., v_n) \in \mathbb{R}^{k \times n}$$
 (such that $V^{\top}V = X$) **Output:** $x \in \{-1, 1\}^n$ (feasible solution for QUBO/Max-Cut)

 $h \leftarrow \text{ random vector on the unit sphere } \mathcal{S}^{k-1};$

for $i \leftarrow 1$ to n do

$$x_i \leftarrow egin{cases} +1, & ext{if } h^ op v_i \geq 0 \ -1, & ext{otherwise} \end{cases}$$

return x;

- ▶ local search to improve the solution (one-opt and two-opt)
- reasonable candidates for local search
- 'good' hyperplane idea