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Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP approaches exist only for sparse C

▶ solver is mainly developed for dense C

Example:

Max-Cut Problem: C = 1
4L(G ), where L(G ) Laplacian matrix
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The (Weighted) Max-Cut Problem

Given: undirected graph G = (V ,E ) with edge weights w ∈ RE
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Max-Cut
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)
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Examples I

QUBO in {0, 1}-variables

max
x∈{0,1}n

{
x⊤Qx + q⊤x

}
where Q ∈ Rn×n and q ∈ Rn.

⇔

Reformulation in {−1, 1}-variables

max
x∈{−1,1}n+1

x⊤Cx

where

C :=
1
4

[
e⊤Qe + 2q⊤e e⊤Q + q⊤

Qe + q Q

]
.
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Examples II

Linearly constrained binary quadratic problem (BQP)

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

For some C ∈ R(n+1)×(n+1), (BQP) is equivalent to

Reformulation (used in BiqBin solver)

min x⊤Cx
s. t. x ∈ {−1, 1}n+1

x0 = 1.
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Examples III

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

⇔

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n
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Live demonstration

Live demonstration!
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Solvers for dense C using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)
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Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X ) = e

▶ X ⪰ 0
▶ rank(X ) = 1

max x⊤Cx

s. t. x ∈ {−1, 1}n

⇔ ≤

max ⟨C ,X ⟩
s. t. diag(X ) = e

X ⪰ 0

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ competitive implementations possible without inequalities?!
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Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X ) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]
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Geometric Interpretation

v⊤i vj = ∥vi∥ · ∥vj∥ · cos∡(vi , vj)
= cos∡(vi , vj)

v1

v2

v3
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Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one vector vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi )
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0
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Mixing Method (Wang el al., 2018)

v2
v1

v3
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Mixing Method (Wang el al., 2018)

v2
v1

v3

V · c1
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v2
v1

v3

V ·c1
∥V ·c1∥
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Mixing Method (Wang el al., 2018)

v2

v3

v1

Mixing Method
▶ repeat for v1, v2, . . . , vn again and again
▶ initialize v1, . . . , vn randomly on the unit sphere
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Algorithm: Mixing Method
Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C ) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

▶ objective value is strictly increasing

▶ value increases by 2(∥g∥ − v⊤
i g) for each update g = V · ci
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Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F )

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15



Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F )

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15



Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F )

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15



Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F )

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15



Upper bounds via weak duality

Duality

max ⟨C ,X ⟩
s. t. diag(X ) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C ⪰ 0

y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

Assume that diag(C ) = 0. If V ∗ is optimal for (SDP-vec), then the
vector y∗ ∈ Rn with entries y∗i = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C ) e
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Other possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C ) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X ) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ but: computing x̄ requires another eigenvalue computation

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17
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Branch-and-Bound

Branching:
▶ we branch on products Xij (like in BiqMac)
▶ branching on Xn−1,n results in C ′ ∈ R(n−1)×(n−1) with entries

c ′ij =


cij 1 ≤ i , j ≤ n − 1
ci ,n−1 ± cin 1 ≤ i < n − 1, j = n − 1
cn−1,j ± cn,j i = n − 1, 1 ≤ j < n − 1
cn−1,n−1 ± 2cn−1,n + cn,n i = j = n − 1

▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds like discussed before
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Branching Example

C =


2 −1 3 −2
−1 −1 1 2
3 1 1 −1
−2 2 −1 1


Branching on (2, 3) with X23 = x2 · x3 = 1:

2 −1 + 3 3 −2
−1 + 3 −1 + 1 + 2 · 1 1 2− 1

3 1 1 −1
−2 2− 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 2 −2
2 2 1
−2 1 1


Branching on (2, 3) with X23 = x2 · x3 = −1:

2 −1− 3 3 −2
−1− 3 −1 + 1− 2 · 1 1 2 + 1

3 1 1 −1
−2 2 + 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 −4 −2
−4 −2 3
−2 3 1


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Branching decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |
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Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.
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Feature: Variable fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.
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Proof.

Diag(ỹ)− C̃ = Diag

y/j +


∥δ∥1
|δ1|
...

|δn−2|


−

(
C/j −

(
0 δ⊤

δ 0

))

= Diag
(
y/j

)
+Diag



∥δ∥1
|δ1|
...

|δn−2|


− C/j +

(
0 δ⊤

δ 0

)

= Diag
(
y/j

)
− C/j︸ ︷︷ ︸

⪰0

+Diag



∥δ∥1
|δ1|
...

|δn−2|


+

(
0 δ⊤

δ 0

)
︸ ︷︷ ︸

⪰0

⪰ 0
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Variable fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij

▶ best scenario: ‘free’ dual bound worse than best known primal
bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!
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Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X )
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25



Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X )
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25



Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X )
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25



Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X )
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25


