
Insights: A Mixing Method based
Branch-and-Bound Solver for QUBO Problems
Joint work with Valentin Durante

November 17, 2022

1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 1

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP approaches exist only for sparse C

▶ solver is mainly developed for dense C

Example:

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP approaches exist only for sparse C

▶ solver is mainly developed for dense C

Example:

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

Quadratic Unconstrained Binary Optimization (QUBO)

▶ internally solves problems of the following type:

QUBO in {−1, 1}-variables

Given C ∈ Rn×n, solve

max x⊤Cx
s. t. x ∈ {−1, 1}n. (QUBO)

▶ NP-hard
▶ LP approaches exist only for sparse C

▶ solver is mainly developed for dense C

Example:

Max-Cut Problem: C = 1
4L(G), where L(G) Laplacian matrix

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 2

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

The (Weighted) Max-Cut Problem

Given: undirected graph G = (V ,E) with edge weights w ∈ RE

1

2 3

4

56

1

5

5

3

−1 −2

2

−3

Max-Cut
Find a maximum cut in G , i.e., an optimal solution of

max
S⊆V

∑
i∈S, j∈V \S

wij . (MC)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 3

Examples I

QUBO in {0, 1}-variables

max
x∈{0,1}n

{
x⊤Qx + q⊤x

}
where Q ∈ Rn×n and q ∈ Rn.

⇔

Reformulation in {−1, 1}-variables

max
x∈{−1,1}n+1

x⊤Cx

where

C :=
1
4

[
e⊤Qe + 2q⊤e e⊤Q + q⊤

Qe + q Q

]
.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

Examples I

QUBO in {0, 1}-variables

max
x∈{0,1}n

{
x⊤Qx + q⊤x

}
where Q ∈ Rn×n and q ∈ Rn.

⇔

Reformulation in {−1, 1}-variables

max
x∈{−1,1}n+1

x⊤Cx

where

C :=
1
4

[
e⊤Qe + 2q⊤e e⊤Q + q⊤

Qe + q Q

]
.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 4

Examples II

Linearly constrained binary quadratic problem (BQP)

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

For some C ∈ R(n+1)×(n+1), (BQP) is equivalent to

Reformulation (used in BiqBin solver)

min x⊤Cx
s. t. x ∈ {−1, 1}n+1

x0 = 1.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Examples II

Linearly constrained binary quadratic problem (BQP)

min x⊤Qx + q⊤x
s. t. Ax = b

x ∈ {0, 1}n
(BQP)

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm.

For some C ∈ R(n+1)×(n+1), (BQP) is equivalent to

Reformulation (used in BiqBin solver)

min x⊤Cx
s. t. x ∈ {−1, 1}n+1

x0 = 1.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 5

Examples III

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

⇔

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Examples III

Maximum Stable Set Problem

max e⊤x
s. t. xixj = 0, ∀ij ∈ E

x ∈ {0, 1}n
(MSSP)

⇔

Reformulation of (MSSP)

max

n

2
+

1
2
e⊤x − n

∑
ij∈E

(xi + 1)(xj + 1)


s. t. x ∈ {−1, 1}n

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 6

Live demonstration

Live demonstration!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 7

Solvers for dense C using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Solvers for dense C using Semidefinite Programming

BiqMac (2010) BiqCrunch (2016)

MADAM (2021) BiqBin (2022)

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 8

Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

max x⊤Cx

s. t. x ∈ {−1, 1}n

⇔ ≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ competitive implementations possible without inequalities?!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Equivalent formulations

max x⊤Cx

s. t. x ∈ {−1, 1}n
⇔

≤

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ competitive implementations possible without inequalities?!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Semidefinite relaxation

max x⊤Cx

s. t. x ∈ {−1, 1}n

⇔

≤
max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ competitive implementations possible without inequalities?!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Semidefinite Relaxation

We introduce X := xx⊤:

▶ x⊤Cx = ⟨C , xx⊤⟩ = ⟨C ,X ⟩
▶ diag(X) = e

▶ X ⪰ 0
▶ rank(X) = 1

Semidefinite relaxation

max x⊤Cx

s. t. x ∈ {−1, 1}n

⇔

≤
max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
rank(X) = 1

▶ all mentioned solvers: additional ‘clique’ inequalities
▶ competitive implementations possible without inequalities?!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 9

Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Low-rank Factorization X = V⊤V

Factorization of X ⪰ 0

X = V⊤V

for some V = (v1| . . . |vn) ∈ Rk×n with k ≤ n.

▶ Xij = v⊤i vj ⇒ ⟨C ,X ⟩ =
∑n

i ,j=1 CijXij =
∑n

i ,j=1 Cijv
⊤
i vj

▶ diag(X) = e ⇔ ∥vi∥ = 1, i = 1, . . . , n

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

▶ (SDP) ⇔ (SDP-vec) for k >
√

2n [cf. Pataki, 1998]

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 10

Geometric Interpretation

v⊤i vj = ∥vi∥ · ∥vj∥ · cos∡(vi , vj)
= cos∡(vi , vj)

v1

v2

v3

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 11

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one vector vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one vector vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Coordinate Ascent Method

Optimization Problem (SDP-vec)

max
n∑

i ,j=1

Cijv
⊤
i vj

s. t. ∥vi∥ = 1, i = 1, . . . , n

(SDP-vec)

Coordinate Ascent
We fix all but one vector vi . (SDP-vec) reduces to

max g⊤vi = ∥g∥ · ∥vi∥ · cos∡(g , vi)
s. t. ∥vi∥ = 1, vi ∈ Rk

where g =
∑n

j cijvj = V · ci

▶ closed-form solution: vi =
g

∥g∥ for g ̸= 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 12

Mixing Method (Wang el al., 2018)

v2
v1

v3

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Mixing Method (Wang el al., 2018)

v2
v1

v3

V · c1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Mixing Method (Wang el al., 2018)

v2
v1

v3

V ·c1
∥V ·c1∥

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Mixing Method (Wang el al., 2018)

v2

v3

v1

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Mixing Method (Wang el al., 2018)

v2

v3

v1

Mixing Method
▶ repeat for v1, v2, . . . , vn again and again
▶ initialize v1, . . . , vn randomly on the unit sphere

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 13

Algorithm: Mixing Method
Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

▶ objective value is strictly increasing

▶ value increases by 2(∥g∥ − v⊤
i g) for each update g = V · ci

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Algorithm: Mixing Method
Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

▶ objective value is strictly increasing

▶ value increases by 2(∥g∥ − v⊤
i g) for each update g = V · ci

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Algorithm: Mixing Method
Algorithm 1: Mixing Method (Wang et al., 2018)

Input: C = (c1| . . . |cn) ∈ Rn×n with diag(C) = 0, k ∈ N≥1
Output: approximate solution V = (v1| . . . |vn) ∈ Rk×n of (SDP-vec)

for i ← 1 to n do
vi ← random vector on the unit sphere Sk−1;

while not yet converged do
for i ← 1 to n do

vi ← V ·ci
∥V ·ci∥ ;

Theorem (Wang et al., 2018)

The Mixing Method converges linearly to the global optimum under a
non-degeneracy assumption.

▶ objective value is strictly increasing

▶ value increases by 2(∥g∥ − v⊤
i g) for each update g = V · ci

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 14

Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F)

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F)

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F)

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Stopping criteria

δ

Let δ ∈ R+ denote the accumulated improvement of the objective
during the last execution of the while loop.

Function tolerance
▶ stop if δ < tol_delta_abs
▶ stop if δ < tol_delta_rel ·

(
1 +

∣∣⟨C ,V⊤V ⟩
∣∣)

Step tolerance
▶ stop if ∥Vold − Vnew∥F < tol_V_abs
▶ stop if ∥Vold − Vnew∥F < tol_V_rel · (1 + ∥Vold∥F)

We use
▶ tol_delta_abs = tol_delta_rel = tol_V_abs = 0
▶ tol_V_rel = 0.013

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 15

Upper bounds via weak duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C ⪰ 0

y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

Assume that diag(C) = 0. If V ∗ is optimal for (SDP-vec), then the
vector y∗ ∈ Rn with entries y∗i = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Upper bounds via weak duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C ⪰ 0

y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

Assume that diag(C) = 0. If V ∗ is optimal for (SDP-vec), then the
vector y∗ ∈ Rn with entries y∗i = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Upper bounds via weak duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C ⪰ 0

y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

Assume that diag(C) = 0. If V ∗ is optimal for (SDP-vec), then the
vector y∗ ∈ Rn with entries y∗i = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2

▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Upper bounds via weak duality

Duality

max ⟨C ,X ⟩
s. t. diag(X) = e

X ⪰ 0
(SDP)

min e⊤y
s. t. Diag(y)− C ⪰ 0

y ∈ Rn

(DSDP)

Proposition [Wang et al., 2018]

Assume that diag(C) = 0. If V ∗ is optimal for (SDP-vec), then the
vector y∗ ∈ Rn with entries y∗i = ∥V · ci∥2 is optimal for (DSDP).

After stopping the Mixing Method with approximate Ṽ :
▶ approximate but non-feasible dual variables: ỹi = ∥Ṽ · ci∥2
▶ feasible dual variables: y = ỹ − λmin (Diag(ỹ)− C) e

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 16

Other possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ but: computing x̄ requires another eigenvalue computation

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17

Other possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ but: computing x̄ requires another eigenvalue computation

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17

Other possibility

We use the dual bound

e⊤ỹ − nλmin (Diag(ỹ)− C) .

Better upper bound [Jansson et al., 2007]

Let ỹ ∈ Rn and x̄ such that λmax(X) ≤ x̄ for some optimal X of
(SDP). Then

e⊤ỹ −
∑

λk (Diag(ỹ)−C)<0

λk x̄

is an upper bound on (SDP).

▶ slightly better bounds
▶ but: computing x̄ requires another eigenvalue computation

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 17

Branch-and-Bound

Branching:
▶ we branch on products Xij (like in BiqMac)
▶ branching on Xn−1,n results in C ′ ∈ R(n−1)×(n−1) with entries

c ′ij =


cij 1 ≤ i , j ≤ n − 1
ci ,n−1 ± cin 1 ≤ i < n − 1, j = n − 1
cn−1,j ± cn,j i = n − 1, 1 ≤ j < n − 1
cn−1,n−1 ± 2cn−1,n + cn,n i = j = n − 1

▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds like discussed before

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branch-and-Bound

Branching:
▶ we branch on products Xij (like in BiqMac)
▶ branching on Xn−1,n results in C ′ ∈ R(n−1)×(n−1) with entries

c ′ij =


cij 1 ≤ i , j ≤ n − 1
ci ,n−1 ± cin 1 ≤ i < n − 1, j = n − 1
cn−1,j ± cn,j i = n − 1, 1 ≤ j < n − 1
cn−1,n−1 ± 2cn−1,n + cn,n i = j = n − 1

▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds like discussed before

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branch-and-Bound

Branching:
▶ we branch on products Xij (like in BiqMac)
▶ branching on Xn−1,n results in C ′ ∈ R(n−1)×(n−1) with entries

c ′ij =


cij 1 ≤ i , j ≤ n − 1
ci ,n−1 ± cin 1 ≤ i < n − 1, j = n − 1
cn−1,j ± cn,j i = n − 1, 1 ≤ j < n − 1
cn−1,n−1 ± 2cn−1,n + cn,n i = j = n − 1

▶ best-first search (largest upper bound)

Bounding:
▶ primal (lower) bounds via heuristics
▶ dual (upper) bounds like discussed before

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 18

Branching Example

C =


2 −1 3 −2
−1 −1 1 2
3 1 1 −1
−2 2 −1 1


Branching on (2, 3) with X23 = x2 · x3 = 1:

2 −1 + 3 3 −2
−1 + 3 −1 + 1 + 2 · 1 1 2− 1

3 1 1 −1
−2 2− 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 2 −2
2 2 1
−2 1 1


Branching on (2, 3) with X23 = x2 · x3 = −1:

2 −1− 3 3 −2
−1− 3 −1 + 1− 2 · 1 1 2 + 1

3 1 1 −1
−2 2 + 1 −1 1

 remove
========⇒
row/column 3

C ′ =

 2 −4 −2
−4 −2 3
−2 3 1



Jan Schwiddessen University of Klagenfurt, Department of Mathematics 19

Branching decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Branching decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Branching decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.

2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Branching decision

▶ SDP approaches in literature only use X for branching decision
▶ often: branching on most fractional variable
▶ some solvers branch in first row/column only

Branching decision based on dual variables
We determine the branching decision (i , j) in O(n):

1 Find i = argmaxk {yk}.
2 Find j = argmaxk {(yi + yk) · f (Xik) : |Xik | ≤ 0.875}.

▶ where f : {−1, 1} → [0, 1] decreasing in |Xik |

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 20

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)

▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)

▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching

Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Early branching

Assumption
Finding an optimal solution with heuristics is easy.

Observation
The Mixing Method produces primal feasible iterates for (SDP).

Stopping criteria have an impact on:
▶ solutions found by heuristics (important for pruning)
▶ branching decision (important for overall efficiency)
▶ upper bound (important for pruning and best-first search)

Early branching
Immediately branch if we have done at least 4 iterations of the
while loop and we know that the optimal value of (SDP) will be
larger than the best known lower bound found by heuristics.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 21

Feature: Variable fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Feature: Variable fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Feature: Variable fixing

Given: Dual feasible solution Diag(y)− C ⪰ 0 for C ∈ Rn×n.

Notation
▶ C/j denotes matrix C without row j and column j .
▶ y/j denotes vector y without entry j .

Branching on (1, j) would yield cost matrix C̃ ∈ R(n−1)×(n−1) with

C/j − C̃ =

(
0 δ⊤

δ 0

)
for some δ ∈ Rn−2.

Lemma

ỹ := y/j +


∥δ∥1
|δ1|
...

|δn−2|

 is dual feasible, i.e., Diag(ỹ)− C̃ ⪰ 0.

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 22

Proof.

Diag(ỹ)− C̃ = Diag

y/j +


∥δ∥1
|δ1|
...

|δn−2|


−

(
C/j −

(
0 δ⊤

δ 0

))

= Diag
(
y/j

)
+Diag



∥δ∥1
|δ1|
...

|δn−2|


− C/j +

(
0 δ⊤

δ 0

)

= Diag
(
y/j

)
− C/j︸ ︷︷ ︸

⪰0

+Diag



∥δ∥1
|δ1|
...

|δn−2|


+

(
0 δ⊤

δ 0

)
︸ ︷︷ ︸

⪰0

⪰ 0

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 23

Variable fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij

▶ best scenario: ‘free’ dual bound worse than best known primal
bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Variable fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Variable fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Variable fixing

▶ bound at current node: e⊤y

‘Free’ dual bound if we would branch
Dual bound after branching on (i , j): e⊤ỹ + 2∥δ∥1 ± 2cij .

▶ difference of bounds: −yj + 2
∑

k ̸=i ,j |cjk | ± 2cij
▶ best scenario: ‘free’ dual bound worse than best known primal

bound

How we use it
▶ check all O(n2) candidates in O(n2) time
▶ do usual branching step + additional fixation(s)

Issue
Conflict with early branching (no dual feasible solution)!

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 24

Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25

Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25

Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25

Primal heuristic

Algorithm 2: Goemans-Williamson hyperplane rounding
Input: V = (v1, . . . , vn) ∈ Rk×n (such that V⊤V = X)
Output: x ∈ {−1, 1}n (feasible solution for QUBO/Max-Cut)

h← random vector on the unit sphere Sk−1;
for i ← 1 to n do

xi ←

{
+1, if h⊤vi ≥ 0
−1, otherwise

return x ;

▶ local search to improve the solution (one-opt and two-opt)

▶ reasonable candidates for local search

▶ ‘good’ hyperplane idea

Jan Schwiddessen University of Klagenfurt, Department of Mathematics 25

